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Editor’s Note 
 
 
This document represents the views of the biophysical product focus area of the CEOS 
WGCV Land Product Validation (LPV) sub-group. This focus area provides those 
involved in producing and validating satellite based leaf area index (LAI) products with a 
forum for documenting accepted best practices in an open and transparent manner that 
is scientifically defensible. This Global LAI product validation best practice protocol 
document (V2.0) has undergone scientific review by remote sensing experts from across 
the world. All comments and suggestions have been considered to formulate this 
consensus document and responses to reviewer concerns are logged alongside the 
protocol on the LPV webpage.  Furthermore, a list of recommendations arising from 
findings in this document will be provided on the LPV webpage 
(http://lpvs.gsfc.nasa.gov/). It is expected the best practice protocol document and 
recommendations will undergo subsequent regular iterations based on community 
feedback and scientific advancement.  
 
We welcome all interested experts to participate in improving this document and invite 
the broader community to make use of it for their research and applications related to 
leaf area index products derived from satellite imagery. All contributors will be 
recognised as such in the document and on the CEOS WGCV LPV website. 
 
Sincerely, 
 
Richard Fernandes, Canada Centre for Remote Sensing 
Stephen Plummer, European Space Agency 
Joanne Nightingale, National Physical Laboratory 
 
Chair of the CEOS WGCV Land Product Validation Group 
Gabriela Schaepman-Strub, University of Zurich 
 
January 2014 

 



 

-4- 
 

TABLE OF CONTENTS 
SUMMARY ..................................................................................................................................... 9	  
1	   INTRODUCTION ................................................................................................................... 13	  

1.1	   Importance of LAI ................................................................................................ 13	  
1.2	   The UNFCCC and the Global Climate Observing System .................................. 13	  
1.3	   The Role of CEOS WGCV .................................................................................. 13	  
1.4	   GCOS IP Action Items ........................................................................................ 15	  
1.5	   LAI Requirements ............................................................................................... 16	  
1.6	   Goal of this Document ........................................................................................ 17	  

2	   DEFINITIONS ........................................................................................................................ 18	  
2.1	   Definition of LAI ................................................................................................... 18	  
2.2	   Definitions of Associated Physical Parameters ................................................... 18	  

2.2.1	   Projected LAI ........................................................................................................... 18	  
2.2.2	   Plant Area Index (PAI) ........................................................................................... 18	  
2.2.3	   Effective LAI (LAIe) or Effective PAI (PAIe) ....................................................... 19	  
2.2.4	   Clumping Index ....................................................................................................... 19	  

2.3	   Definition of Other Key Terms ............................................................................. 20	  
2.3.1	   Elementary Sampling Unit (ESU) ......................................................................... 20	  
2.3.2	   Local Horizontal Datum ......................................................................................... 22	  
2.3.3	   Ground Projected Instantaneous Field of View of Measurement (PIFOV) .... 22	  
2.3.4	   Effective Ground Projected Instantaneous Field of View of Measurement 
(EPIFOV) ............................................................................................................................... 23	  
2.3.5	   Satellite Measurement Geolocation Uncertainty ............................................... 23	  
2.3.6	   Mapping Unit ........................................................................................................... 23	  

3	   GENERAL CONSIDERATIONS FOR SATELLITE-DERIVED GLOBAL LAI 
PRODUCT VALIDATION ........................................................................................................... 24	  

3.1	   CEOS Validation Stages ..................................................................................... 24	  
3.2	   Reference LAI Estimates .................................................................................... 24	  

3.2.1	   ESU Mapping Unit .................................................................................................. 24	  
3.2.2	   In situ Reference LAI over an ESU ...................................................................... 25	  
3.2.3	   ESU LAI Accuracy .................................................................................................. 27	  
3.2.4	   ESU LAI Precision .................................................................................................. 28	  
3.2.5	   Upscaling of Reference LAI Estimates ................................................................ 29	  
3.2.6	   Sample Size ............................................................................................................. 35	  
3.2.7	   Sampling Design ..................................................................................................... 36	  
3.2.8	   Reference Map Accuracy ...................................................................................... 38	  
3.2.9	   Reporting of Statistics ............................................................................................ 38	  

4	   GENERAL STRATEGY FOR VALIDATION OF GLOBAL LAI PRODUCTS ............... 39	  
4.1.	   Current Products ................................................................................................. 39	  

4.1.1	   Uncertainties Related to Input Data ..................................................................... 39	  
4.1.1.1	   Sensor Noise ......................................................................................... 42	  
4.1.1.2	   Clear Sky Uncertainty ............................................................................ 42	  
4.1.1.3	   BRDF Modelling Uncertainty ................................................................. 43	  
4.1.1.4	   Canopy and Understory Modelling Uncertainty ..................................... 43	  

4.1.2	   Geometric Considerations ..................................................................................... 43	  
4.1.3	   Temporal Considerations ...................................................................................... 44	  
4.1.4	   LAI Product Definitions .......................................................................................... 44	  



 

-5- 
 

4.2	   Status of Current Validation Capacity ................................................................. 45	  
4.3	   Validation Requirements ..................................................................................... 45	  

4.3.1	   Direct Validation on a Global Basis Representative of Seasonal Conditions 
and Estimation of Accuracy in LAI Units .......................................................................... 45	  
4.3.2	   Quantify the Representative LAI Accuracy Estimate Over Areas or Time 
Periods Without Reference Datasets ............................................................................... 46	  
4.3.3	   Quantify the Intra-Annual Precision of LAI Estimates Over Space and Time 
on a Globally Representative Basis .................................................................................. 46	  
4.3.4	   Quantify the Long Term (Inter-Annual) Stability in LAI Products .................... 47	  

4.4	   Challenges to Validation Strategy ....................................................................... 47	  
4.4.1	   Insufficient Reference Data ................................................................................... 47	  
4.4.2	   Insufficient Products to Generate an Unbiased Ensemble .............................. 47	  
4.4.3	   Thematic Differences in LAI Definitions .............................................................. 48	  

4.5	   Status of Current Validation Capacity ................................................................. 48	  
4.5.1	   Data ........................................................................................................................... 48	  
4.5.2	   Methods .................................................................................................................... 50	  

4.5.2.1	   In Situ Reference Estimates .................................................................. 50	  
4.5.2.2	   Statistics Used for Performance Assessments ..................................... 52	  

5	   RECOMMENDED APPROACH FOR GLOBAL LAI PRODUCT VALIDATION .......... 54	  
5.1	   Reference Data Sets ........................................................................................... 55	  

5.1.1	   Reference Estimates Traceable to In situ Measurements ............................... 55	  
5.1.2	   Heuristic Reference Estimates ............................................................................. 56	  
5.1.3	   Co-location of LAI Estimates ................................................................................ 56	  

5.1.3.1	   Geolocation Uncertainty ........................................................................ 57	  
5.1.3.2	   Binning Uncertainty ............................................................................... 57	  

5.2	   Validation Metrics ................................................................................................ 60	  
5.2.1	   Definitions ................................................................................................................ 60	  
5.2.2	   Stratification of Performance Statistics ............................................................... 60	  
5.2.3	   Validation Statistics ................................................................................................ 62	  

5.2.3.1	   Measurement Uncertainty ..................................................................... 63	  
5.2.3.2	   Precision ................................................................................................ 66	  
5.2.3.3	   Completeness ....................................................................................... 68	  
5.2.3.4	   Ensemble Inter-comparison .................................................................. 69	  

5.3.	   Reporting Results of LAI Validation .................................................................... 71	  
6	   CONCLUSIONS .................................................................................................................... 72	  
7	   REFERENCES ...................................................................................................................... 73	  
8	   APPENDIX A .......................................................................................................................... 78	  
 

	  
 

 
  



 

-6- 
 

LIST OF FIGURES 
 
 
Figure 1: Location of reference LAI sites available for direct validation and 
BELMANIP2 sites designated for product inter-comparison based on the OLIVE 
Validation Platform. (http://calvalportal.ceos.org/web/olive/site-description) ............................... 14. 
 
Figure 2: Depiction of spatial footprint of a LAI-2000 instrument as a function of 
zenithal view ring (left) and the TRAC instrument for a given solar illumination 
condition (from (Leblanc 2005c, Leblanc 2008, Garrigues et al. 2008b, Ryu et al. 
2010)). .......................................................................................................................................... 21. 
 
Figure 3: Spatial footprints of LAI-2000 (left) and TRAC (right) measurements 
following the CCRS sampling scheme (adapted from (Leblanc 2005c, Leblanc 
2008)) for overstory LAI for a 40mx40m ESU. LAI-2000 footprints determined by 
canopy height while TRAC footprints are determined both by canopy height and 
solar zenith angle. Only every second TRAC footprint shown for clarity ..................................... 21. 
 
Figure 4:  Spatial footprint (purple) of LAI-2000 sampling of homogenous (left) 
and row (right) 1m tall  20m x 20m crop canopy ESU following the LICOR 
protocol (adapted from (Licor 2010)). Note the large difference in sampled area 
with change in view cap to account for row crops. Normally this sampling would 
need to be replicated to cover an ESU of sufficient size for LAI validation 
purposes ...................................................................................................................................... 22. 
 
Figure 5:  VALERI ESU sampling over a 3km x 3km agricultural region.  Panel on 
left indicates location of samples over a colour composite satellite image. Panel 
on right compares the cumulative frequency distribution of sampled NDVI at 
ESUs (red dots) versus extreme ranges based on Monte-Carlo ESU sampling 
with the same sample size ........................................................................................................... 31. 
 
Figure 6:  Outputs of VALERI reference LAI mapping process. Left panel shows 
scatter plot of predicted versus actual LAI based on robust linear regression. 
Outliers are indicated as alphanumeric symbols. Centre panel shows mask of 
areas within (blue) and outside (red) spectral convex hull of ESU data. Right 
panel shows final reference LAI map ........................................................................................... 31. 
 
Figure 7: CCRS approach for reference LAI map production over a Boreal forest 
region with an open-pit mine (purple areas). ESUs are indicated as yellow 
crosses. White outline corresponds to spatial convex hull containing ESUs dilated 
by 1km. ESUs outside convex hull did not correspond to land cover used for 
transfer functions (needle leaf or broadleaf forests) ..................................................................... 33. 
 
Figure 8:  Left panel shows transfer function for needle leaf land cover class 
developed using a robust Thiel-Sen univariate linear regression (solid line) with 
its 95th percentile prediction confidence interval. The right panel compares the 
size of the prediction confidence interval of the univariate regression shown in the 
left panel with a transfer function based on multivariate linear regression using 
two vegetation indices (SR and ISR) ........................................................................................... 33. 
 
Figure 9: Convex hull of reference map area using only RSR (black border) 



 

-7- 
 

together with areas falling outside convex hull when using both SR and ISR 
mapped as black. White areas are designated as LAI 0 based directly on land 
cover ............................................................................................................................................ 34. 
 
Figure 10: Average uncertainty for three global LAI products between 2003 and 
2010 for January (left) and July (right) as stated by the producer (Fang et al. 
2013) ............................................................................................................................................ 39. 
 
Figure 11: Climatologies of producer uncertainties for global LAI products 
between 2003 and 2010 over major global biomes. The y-axis is the uncertainty 
in LAI units. (Fang et al. 2013) ..................................................................................................... 40. 
 
Figure 12: Strata for global LAI validation by CEOS, together with BELMANIP2 
regional sites (yellow triangles). From (Weiss et al. Submitted) .................................................. 60. 
 
Figure 13: Comparison of the cumulative distribution of the ECOCLIMMAP peak 
season LAI within the BELMANIP sampling design over a global extent (all 
mapped land pixels). From (Baret et al. 2006) ............................................................................. 61. 
 
Figure 14: Scatter plots between reference and product LAI for a global 
validation study together with the median absolute difference and range of 
absolute differences as a function of biome. From (Garrigues et al. 2008a) ............................... 63. 
 
Figure 15: Comparison of CCRS SPOT VGT LAI product with the reference LAI 
map shown in Example 5. Left panel shows the percentile rank of both absolute 
residual (blue line) and relative residuals (green line). Right panel provides a 
bivariate density plot .................................................................................................................... 64. 
 
Figure 16: Box-plots of measurement uncertainty statistics from comparison of 
CCRS VGT LAI and reference LAI map shown in Example 5. Red bars indicate 
median residuals, blue boxes cover 50% of the data, whiskers include 95% of the 
data .............................................................................................................................................. 65. 
 
Figure 17: Historgam of differences for four global LAI products over all 
BELMANIP2 sites for 3 years (Camacho et al. 2011) .................................................................. 66. 
 
Figure 18: Percentage of acceptable quality retrievals (according to producer 
provided quality indices) as a function of time (a) or biome (b). Note that these 
statistics assume accurate data quality reporting by producers. From (Fang et al. 
2013) ............................................................................................................................................ 67. 
 
Figure 19: Gap length frequency for four Global LAI products over all 
BELMANIP2 sites for 3 years (Camacho et al. 2012) .................................................................. 67. 
 
Figure 20: Anomalies in peak season LAI between global products and a chosen 
reference member (in this case a regional LAI product over Canada and Alaska). 
Boxes indicate regions with differences related to land cover specification in 
global products. From (Garrigues et al. 2008a) ........................................................................... 68. 
 
 
Figure 21: Scatter plots comparing growing season LAI for four global LAI 
products over grassland biome BELMANIP sites for four years. Included are 



 

-8- 
 

summary statistics for linear correlation coefficient (R2), root mean square error 
(RMSE), mean signed bias (B), and standard deviation of differences (S). From 
(Garrigues et al. 2008a) ............................................................................................................... 69. 
 
Figure 22: Inter-comparison of product LAI histograms on a biome basis. From 
(Camacho et al. 2011) .................................................................................................................. 69. 

 
 
 
 
 

 
LIST OF TABLES 

 
 

Table 1:  WMO Requirements for Global LAI Products 
(From http://www.wmo-sat.info/oscar/variables/view/98);  
G=goal,B=breakthrough,T=threshold ........................................................................................... 17. 
 
Table 2: The CEOS WGCV Land Product Validation Hierarchy .................................................. 24. 
 
Table 3: In-situ LAI guidelines ..................................................................................................... 26. 
 
Table 4:  Range of LAI as a function of land cover (after (Asner et al. 2003)) ............................. 27. 
 
Table 5:  Recommended parameters with suggested ranges for sensitivity analyses for LAI 
products ....................................................................................................................................... 41. 
 
Table 6: Recommended validation statistics ............................................................................... 62. 



 

-9- 
 

SUMMARY 
 
 
The Global Climate Observing System (GCOS) has specified the need to systematically 
produce and validate global leaf area index (LAI) products. This document provides 
recommendations on good practices for the validation of global LAI products. 
Internationally accepted definitions of LAI and associated quantities are provided to 
ensure thematic compatibility across products and reference datasets. A survey of 
current validation capacity indicates that progress is being made towards the use of 
standard spatial sampling and in situ measurement methods, but there is less 
standardisation with respect to performing and reporting statistically robust comparisons. 
Three comparison approaches are identified: direct validation, indirect validation, and 
completeness. Direct validation, corresponds to the comparison of temporally and 
spatially concurrent satellite-derived product and up-scaled in situ reference LAI 
estimates. Indirect validation, consisting of inter-comparisons of products with 
ensembles of other products, using a stratified spatial sampling is proposed as a means 
for quantifying product precision as well as the representativeness of direct validation 
sites for a given biome. Completeness, corresponding to the frequency and continuity of 
LAI products, is quantified using a standard set of metrics applied to multi-year products. 
Finally, the need for an open access facility for performing validation as well as 
accessing reference LAI maps and ensemble LAI estimates from products is identified.  
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1 INTRODUCTION 
 
This section explains the international framework that has motivated the current 
document, describes LAI requirements within this framework and summaries the goals 
of this document. 
 
 
1.1 Importance of LAI 
 
Leaf Area Index (LAI) measures the amount of plant leaf material in an ecosystem. It 
appears in many models describing vegetation-atmosphere interactions (GCOS-138 
2010) as a key variable controlling processes such as photosynthesis, respiration and 
rain interception. It is defined as one half the total green leaf area per unit ground 
surface area (Chen et al. 1992). On sloping surfaces, the LAI should be projected to the 
normal to the slope.  
 
 
1.2 The UNFCCC and the Global Climate Observing System 
 
Worldwide systematic observation of the climate system is a key prerequisite for 
advancing scientific knowledge on climate change. The United Nations Framework 
Convention on Climate Change (UNFCCC) calls on Parties to promote and cooperate in 
systematic observation of the climate system, including through support to existing 
international programmes and networks, as indicated in Articles 4.1(g) and 5 of the 
Convention. A key dimension for the implementation of those Articles has been the 
cooperation with the Global Climate Observing System (GCOS), a joint undertaking of 
the World Meteorological Organization (WMO), the Intergovernmental Oceanographic 
Commission (IOC) of the United Nations Educational Scientific and Cultural 
Organization (UNESCO), the United Nations Environment Programme (UNEP) and the 
International Council for Science (ICSU) with its secretariat hosted by the WMO, 
reinforced by decisions taken at various Conferences of the Parties. The signatories of 
the UNFCCC have thus adopted the GCOS as the organising body for climate 
observations expressed through its Implementation Plans (GCOS-92 2004, GCOS-138 
2010). These Implementation Plans establish the requirements for the systematic 
monitoring of a suite of Essential Climate Variables (ECVs) globally. Leaf Area Index 
(LAI) is one of the 16 terrestrial ECVs (GCOS-138 2010). 
 
 
1.3 The Role of CEOS WGCV 
 
LAI can be measured in situ (see Section 3.2) and indirectly from space-based 
observations. While it is routinely measured at a number of research sites, the 
measurement network is sparse in many regions of the world. The CEOS Cal/Val Portal 
currently hosts in situ reference LAI data from 113 global direct validation sites shown in 
Figure 1 (http://calvalportal.ceos.org/web/olive/site-description).  This network should be 
maintained and ideally expanded to become much more representative of the diversity 
of global biomes and ecosystem conditions. The CEOS Cal/Val Portal also identifies a 
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globally representative sampling (BELMANIP2) that should be targeted for future direct 
validation sites. 
 
 
 

 
 

Figure 1: Location of reference LAI sites available for direct validation and BELMANIP2 sites 
designated for product inter-comparison based on the OLIVE Validation Platform. 
(http://calvalportal.ceos.org/web/olive/site-description). 

 
 
The process of improving both the space-based observations and the in situ network is 
embodied in the GCOS Implementation Plans and the accompanying Satellite 
Supplements (GCOS-107 2006, NEON 2009). The Committee on Earth Observation 
Satellites (CEOS) Working Group on Calibration and Validation (WGCV), and in 
particular its sub-group on Land Product Validation (LPV), are required to play a key 
coordination role as well as lend the expertise required to address actions related to 
validation of global LAI measurements as  identified in GCOS-138 as follows: 
 

a. LAI can be estimated in situ by destructive sampling or with the help of 
commercially available dedicated instruments. It is routinely measured at a 
number of research sites dealing with surface climate, ecological, or agricultural 
issues. CEOS WGCV is playing a coordinating role in this work. Benchmarking 
and consistency checking are required for the global archive of LAI 
measurements (p124 of GCOS-138). 

 
b. The development and maintenance of reference sites to address [the] inadequacy 

[in the reference network in some parts of the globe] should be addressed [….]. 
Building on existing networks, such as FLUXNET, LAInet and BIGFOOT, is a 
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possible way to improve this situation. The CEOS WGCV has begun to 
coordinate this through the creation of a centralised database, an activity that 
should continue (p124). 

 
c. Benchmarking and comparison of [satellite] LAI products is essential to resolve 

differences between products and to ensure their accuracy and reliability. The 
CEOS WGCV should lead this activity in collaboration with GCOS and GTOS, 
exploiting in situ observations from designated reference sites and building on the 
validation activities currently being undertaken by the space agencies and 
associated research programmes (p125). 
 

CEOS considers these roles important to achieving validated global LAI products, but at 
the same time recognises current limitations in both resources and in some cases 
knowledge within both CEOS and the international expert community. This good practice 
document makes recommendations that if followed should serve to address many of the 
current limitations. 
 

1.4 GCOS IP Action Items 
 
The role of the CEOS WGCV has been consolidated in a series of Action Items in the 
GCOS Implementation Plan (GCOS-138 2010): 
 
In the terrestrial domain it is essential to obtain global products for most ECVs from a 
range of satellite sensors supported by in situ measurements. A coordinated in situ 
network of terrestrial reference sites is needed for (p14): 
 

a. Observations of the fullest possible range of terrestrial ECVs and associated 
details relevant to their application in model validation;  

b. Process studies;  
c. Validation of observations derived from Earth observation satellites; and  
d. To address intrinsic limitations in some of these, such as the saturation of LAI 

measurements. 
 
Listed below are three key requirements for in situ measurements at reference sites in 
the context of long-term global climate measurements (p106): 
 

a. To ensure that a representative set of biomes are properly and consistently 
documented over long periods of time (decades or more). This will allow the 
details of natural vegetation changes and carbon stocks, including fluxes, to be 
carefully monitored at key locations. 

b. To measure key meteorological ECVs to support interpretation of changes 
recorded at such sites. 

c. To optimise the joint use of these terrestrial reference sites with: 
 

i. A set of sites delivering essential ground data for the validation of satellite-
derived products that provide extensive geographical coverage for these 
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variables (see Action T29 dealing specifically with calibration/validation of 
FAPAR and LAI).  

ii. A set of key ecosystem sites (see Action T4).  
 
 
Currently available satellite LAI products have been shown to exhibit significant 
differences (Garrigues et al. 2008a, Camacho et al. 2010, Camacho et al. 2011, Fang et 
al. 2013), which detract from their usefulness in downstream applications (Gobron et al. 
2009).  
 
In responding to GCOS, CEOS has assigned the action items T29 and T30 to the 
Biophysical Focus Area of the Land Product Validation Sub-group of the CEOS WGCV 
(LPV-Biophysical). LPV-Biophysical has submitted a proposal for a calibration/validation 
in situ network to GCOS (http://lpvs.gsfc.nasa.gov/LAI_background.html) in response to 
T29. This document contributes to addressing the action item T30. 
 

 
Action T29 [IP-04 T29]98 Action: Establish a calibration/validation network of in situ 
reference sites for FAPAR and LAI and conduct systematic, comprehensive evaluation 
campaigns to understand and resolve differences between the products and increase their 
accuracy.  
Who: Parties’ national and regional research centres, in cooperation with space agencies 
coordinated by CEOS WGCV, GCOS and GTOS.  
Time-Frame: Network operational by 2012.  
Performance Indicator: Data available to analysis centres.  
Annual Cost Implications: 1-10M US$ (40% in non-Annex-I Parties).  

 
Action T30 [IP-04 T30] Action: Evaluate the various LAI satellite products and benchmark 
them against in situ measurements to arrive at an agreed operational product.  
Who: Parties’ national and regional research centres, in cooperation with space agencies 
and CEOS WGCV, TOPC, and GTOS.  
Time-Frame: Benchmark by 2012.  
Performance Indicator: Agreement on operational product.  
Annual Cost Implications: 1-10M US$ (10% in non-Annex-I Parties).  

 

1.5 LAI Requirements 
 
LAI products are currently used over local (<10km2), regional (<1000km2) and global 
extents. Local and regional requirements vary significantly by intended use. However, 
GCOS has specified a set of global target requirements (GCOS-138 2010) that in many 
cases may meet local and regional needs: 
 

Spatial resolution: 250 m horizontal 
Temporal resolution: 2-weekly averages 
Accuracy: maximum of 20% or 0.5 
Stability: maximum of 10% or 0.25 

 
GCOS has also specified a requirement for a near-term global LAI product (GCOS-138, 
Action Item 31) at 2km resolution or better although without specification of the temporal 
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resolution.  
 
The GCOS requirements are supplemented by application specific requirements 
identified by the WMO (Table 1). These specific requirements are defined at goal (ideal), 
breakthrough (optimum in terms of cost-benefit), and threshold (minimum acceptable).   
In most cases the GCOS requirements satisfy threshold levels (especially considering 
that GCOS requirements greatly exceed threshold spatial resolution requirements so 
random errors will cancel during spatial aggregation). 
 
 
Table 1:  WMO Requirements for Global LAI Products.  
(From http://www.wmo-sat.info/oscar/variables/view/98); G=goal,B=breakthrough,T=threshold. 
 

Application 
Accuracy (%) Spatial Resolution (km) Temporal Resolution (d) 

G B T G B T G B T 
Global Weather 
Prediction 5 10 20 2 10 50 1 5 10 

Regional 
Weather 
Prediction 

5 10 20 1 5 40 .5 1 2 

Hydrology 5 8 20 0.01 0.1 10 7 11 24 
Agricultural  
Meteorology 5 7 10 0.01 0.1 10 5 6 7 

Climate-Carbon 
Modelling 5 7 10 0.25 0.85 10 1 3 30 

 
 

1.6 Goal of this Document  
 
In response to GCOS Action Item T30, the goal of this document is to identify good 
practices for validating global satellite LAI products. The document will specifically 
address accuracy assessment against reference LAI measurements. The latter should 
be traceable to in situ measurements of known accuracy and the assessment 
augmented with metrics of precision derived from ensembles of products themselves.  
  



 

-18- 
 

2 DEFINITIONS 
 
This section provides the necessary definitions relevant to global LAI validation. 
 

2.1 Definition of LAI  
 

LAI is defined as one half the total green leaf area per unit horizontal ground surface 
area (Chen et al. 1992, GCOS-138 2010). Green leaves correspond to vegetation matter 
capable of photosynthesis in ambient conditions. This definition was adopted across the 
various international groups (CEOS WGCV, GTOS, GOFC-GOLD, GCOS) in December 
2010.This definition of LAI includes foliage in the overstory including epiphytes and 
foliage in the understory including mosses. 
  

2.2 Definitions of Associated Physical Parameters 
 

2.2.1 Projected LAI  
 
Projected LAI corresponds to the projected area of all foliage in a region onto a plane 
normal to a specified direction. A commonly used normal is the vertical. In comparison to 
LAI, when using the vertical normal for projected LAI, if leaves were tilted away from the 
horizontal, the projected LAI will decrease with the lowest value for the vertically oriented 
leaves. Folding leaves and needle foliage will also modify the projected LAI in 
comparison to flat leaves. 
 
Previously, both in situ measurements and satellite-derived products often reported 
projected LAI. Conversion factors are required if these data are to be used in a 
validation protocol. These factors can be derived using geometric information on foliage 
orientation e.g. (Barclay 1998) or by comparison to corresponding measurements of LAI.   
Ideally, both in situ reference LAI data and products should use LAI rather than 
projected LAI to avoid the complexity of developing these conversion factors and the 
additional uncertainty due to the factors when performing comparisons. 
 

2.2.2 Plant Area Index (PAI) 
 
PAI is half the total surface area of all above ground vegetation matter. Many in situ LAI 
estimates are based on indirect measurements related to gap fraction or transmission 
that cannot easily separate green leaf area from non-photosynthetic vegetation (NPV).  
By convention the NPV to total area index ratio (∝) is used to relate LAI to PAI as: 
 
𝐿𝐴𝐼 = 1−∝ 𝑃𝐴𝐼          (1) 
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NPV includes standing and dead woody matter, leaf litter, dead moss or dead lichen and 
fruit but does not include green stalks and vegetation that is still capable of 
photosynthesis even if it is currently dormant (e.g. dried moss carpets). 
  

2.2.3 Effective LAI (LAIe) or Effective PAI (PAIe) 
 
LAI and PAI have frequently been estimated using in situ measurements of directional 
transmission of solar radiation or by gap fraction measurements from imaging sensors 
(Breda 2003, Jonckherre et al. 2004). These approaches are sensitive to the projected 
area of the foliage along each measurement direction and hence the selection of 
direction as well as the leaf angle distribution (Nilson 1971, Nilson 1999). Historically, 
two approaches have been used to minimise this sensitivity to foliage angle. The first 
(conventionally termed ‘Miller’s method’ after (Miller 1967) is to measure the uncollided 
transmission or the gap fraction (P) along all zenith angles (θ) of the upper hemisphere 
(or lower hemisphere for gap fraction of low vegetation) and estimate the PAIe as: 
 

 ( )∫ −=
2

0

sincosln2

π

θθθθ dPPAIe        (2) 

 
The second approach, termed here the ‘1 radian estimate’ is to measure uncollided 
transmission or gap fraction at 1 radian (≈57°) from the normal to the local vertical datum 
so ensuring that the leaf projection coefficient of unit foliage area on a plane 
perpendicular to the view direction (“G-function”, (Nilson 1971)) converges at 
approximately 0.5 irrespective of the leaf inclination angle distribution (Lang et al. 1986, 
Weiss et al. 2004): 
 

 ( )1ln92573.0 PPAIe −=         (3) 
 
Both approaches are almost equivalent under ideal measurement conditions (Leblanc et 
al. 2005a).  
 
The above theory for PAIe also applies to LAIe assuming that the canopy either has no 
NPV or that a correction factor relating PAIe to LAIe is applied. Further discussion of 
these terms is provided in (Breda 2003, Ryu et al. 2010).  
 

2.2.4 Clumping Index  
 
The clumping index is the ratio of the LAIe measured under conditions listed in Section 
2.2.3 to the LAI (Nilson 1971, Chen et al. 1992): 
 

LAI
LAIe

=Ω            (4) 

The same definition is often applied after replacing LAIe and LAI with PAIe and PAI 
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respectively. This definition of clumping does not distinguish between different scales of 
clumping (e.g. crown, patches or rows of vegetation). Rather, it is provided here to note 
the requirement to include appropriate clumping index conversion factors when using 
reference LAIe measurements or when validating LAI products that are in fact calibrated 
to retrieve LAIe. 
 
Under certain conditions the clumping index can be estimated using transmission 
measurements, gap fraction measurements or directional reflectance measurements 
(Chen et al. 1995, Leblanc et al. 2005a, Ryu et al. 2010). These estimates will be 
specific to the scale and spatial and directional sampling of measurements. For specific 
circumstances of needle leaf canopies an additional shoot clumping is needed to 
account for the non-random position of needles on shoots. Shoot clumping is specified 
as either the ‘shillouette to total needle area ratio’ STAR (Oker-Blom et al. 1988) or the 
needle to shoot area ratio (Chen et al. 2006). Values for needle to shoot area ratio range 
from 1.2 to 2.0 (Oker-Blom et al. 1988, Kucharik et al. 1998, Breda 2003, Chen et al. 
2006). 
 

2.3 Definition of Other Key Terms 
 

Validation of satellite LAI products relies on aspects specific to satellite measurements.  
This section reviews terminology in this context. 

2.3.1 Elementary Sampling Unit (ESU) 
 

An Elementary Sampling Unit (ESU) is a contiguous spatial region over which the 
expected value of LAI can be estimated through in situ measurement. The ESU 
corresponds to the finest spatial scale of LAI estimates used for reference LAI maps. 
The ESU size is at least as large as one measurement footprint of the in situ instrument 
and typically includes a number of instrument measurements. The maximum ESU size is 
determined by the level of within ESU LAI variability that can be tolerated by the 
validation protocol and the effort available to conduct measurements. The size of each 
ESU within a reference region also varies with surface condition, instrument field of 
view, illumination conditions (when transmission based measurements are used) and 
spatial sampling design. For example, figure 2 indicates the sensitivity of the 
measurement field of view to canopy and illumination conditions for two common 
instruments.   
 
The ESU size should be sufficient to allow repeat visit with minimum uncertainty due to 
changes in illumination or geolocation. Many indirect LAI estimates rely on statistical 
approaches that require a minimum spatial footprint, and hence ESU size, per 
measurement. Figures 3 and 4 show different ESU sizes determined by the combination 
of instrument, sampling design and canopy height. It is good practice to document the 
size of each ESU and relate the size to the measurement instrument, protocol and 
canopy height. 
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Figure 2: Depiction of spatial footprint of a LAI-2000 instrument as a function of zenithal view 
ring (left) and the TRAC instrument for a given solar illumination condition (from (Leblanc 2005c, 
Leblanc 2008). 

 

 

 
Figure 1: Spatial footprints of LAI-2000 (left) and TRAC (right) measurements following the 
CCRS sampling scheme (adapted from (Leblanc 2005c, Leblanc 2008)) for overstory LAI for a 
40mx40m ESU. LAI-2000 footprints determined by canopy height while TRAC footprints are 
determined both by canopy height and solar zenith angle. Only every second TRAC footprint 
shown for clarity. 

 

Sun Sun
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Figure 2: Spatial footprint (purple) of LAI-2000 sampling of homogenous (left) and row (right) 1m 
tall  20m x 20m crop canopy ESU following the LICOR protocol (adapted from (Licor 2010)). 
Note the large difference in sampled area with change in view cap to account for row crops. 
Normally this sampling would need to be replicated to cover an ESU of sufficient size for LAI 
validation purposes. 

 

2.3.2 Local Horizontal Datum 
 

The local horizontal datum is the plane containing the tangent to the local geoid 
corresponding to the centre of an ESU or mapping unit. For sloped terrain corrections to 
LAI or PAI estimates for the increased surface area of the slope may be required 
depending on survey method. 
 

2.3.3 Ground Projected Instantaneous Field of View of Measurement 
(PIFOV) 

 
The ground projected instantaneous field of view (PIFOV) is the area on the ground 
corresponding to the region over which a measurement is performed. For radiometric 
measurements, this area is defined as the region where the instrument point spread 
function, including all processing aspects except for spatial resampling, exceeds a 
specified threshold. The majority of imaging scanners including satellite imagers have 
PIFOV on flat ground on the order of twice the inter pixel sampling distance. In cases of 
off nadir measurements or large terrain slopes, the canopy height should be included 
when modelling the PIFOV for small footprint imaging scanner measurements. The 
PIFOV of an in situ instrument will vary with the canopy height and angular sampling of 
the instrument. 
 
 
 
 
 

5m

5m
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2.3.4 Effective Ground Projected Instantaneous Field of View of 
Measurement (EPIFOV) 

 
The effective ground projected instantaneous field of view (EPIFOV) corresponds to the 
spatial extent of a measurement including both the PIFOV and the impact of spatial 
resampling. Resampling performed using smoothing filters (e.g. cubic convolution) will 
result in an EPIFOV on the order of the size of the PIFOV convolved with the size of the 
filter spatial support. Non-linear resampling, such as nearest neighbour can result in 
substantial spatial aliasing so that comparisons of values recorded in different EPIFOVs 
should include some sort of spatial averaging using a filter spatial support on the order 
of multiple PIFOVs.  
 

2.3.5 Satellite Measurement Geolocation Uncertainty 
 

Geolocation uncertainty, for LAI validation, corresponds to the planimetric uncertainty of 
a satellite measurement located on the same projection and datum as the ESU or study 
site reference LAI estimates. Geolocation uncertainty is often reported in nominal terms 
and based on a normal distribution of errors. Acquisition specific biases are often 
possible so that geolocation uncertainty should be visually assessed in comparison to 
reference vector layers whenever possible. 
 

2.3.6 Mapping Unit 
 

A mapping unit is the spatial region on the Earth’s surface corresponding to a product or 
reference map value for a specified temporal extent. The majority of satellite based LAI 
products use mapping units corresponding to pixels within rasters in a specified map 
projection rather than per nominal EPIFOV location. As such, these products include a 
spatial generalisation corresponding to the transformation of the LAI estimate over each 
EPIFOV to the LAI estimate in the mapping unit. Considering that GCOS requires 
gridded LAI products at a constant spatial resolution, the CEOS LAI validation protocol 
assumes uncertainties due to this generalisation or due to temporal aggregation are 
considered in the total product uncertainty.  
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3 GENERAL CONSIDERATIONS FOR SATELLITE-DERIVED GLOBAL 
LAI PRODUCT VALIDATION 

 

3.1 CEOS Validation Stages 
 

The CEOS WGCV Land Product Validation sub-group has identified four validation 
levels corresponding to increasing spatial and temporal representativeness of samples 
used to perform direct validation (Table 2). The LAI validation protocol includes these 
aspects and supplements them with requirements for assessing the spatial and temporal 
precision of individual products. 
 
Table 2: The CEOS WGCV Land Product Validation Hierarchy. 

Stage 1 
Validation 

Product accuracy is assessed from a small (typically < 30) set of locations and 
time periods by comparison with in situ or other suitable reference data. 

Stage 2 
Validation 

Product accuracy is estimated over a significant set of locations and time periods 
by comparison with reference in situ or other suitable reference data. 
Spatial and temporal consistency of the product and with similar products has 
been evaluated over globally representative locations and time periods. 
Results are published in the peer-reviewed literature.  

Stage 3 
Validation 

Uncertainties in the product and its associated structure are well quantified from 
comparison with reference in situ or other suitable reference data. Uncertainties 
are characterised in a statistically robust way over multiple locations and time 
periods representing global conditions. 
Spatial and temporal consistency of the product and with similar products has 
been evaluated over globally representative locations and periods. 
Results are published in the peer-reviewed literature.  

Stage 4 
Validation 

Validation results for stage 3 are systematically updated when 
new product versions are released and as the time-series expands.  

 

3.2 Reference LAI Estimates 
 
Reference LAI estimates are required to evaluate the accuracy and to a lesser extent 
the spatial and temporal precision of LAI products. These estimates can be derived by 
suitable up-scaling of either in situ LAI measurements over a number of ESUs or by 
acceptable qualitative estimates of LAI based on land cover. This section surveys 
approaches that have been used to perform these tasks and identifies good practices 
related to the production of reference LAI estimates.  
 

3.2.1 ESU Mapping Unit  
 
Most good practices for LAI validation require an estimate of the spatial mapping unit 
corresponding to each sampled ESU. The ESU mapping unit should correspond to the 
area over which the LAI together with its associated measurement error are 
representative. The ESU should also be large enough to be either directly co-located 
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with LAI product mapping units (see section 5.1.3) or with ancillary information that can 
be used to upscale multiple ESUs over a region. The ESU should also include a means 
of estimation of measurement precision such as replicate sampling. These 
considerations often drive the specification of the ESU mapping unit.   
 

 

 

3.2.2 In situ Reference LAI over an ESU 
 
In situ LAI estimates are acquired for diverse applications and by a range of approaches 
(Breda 2003, Jonckherre et al. 2004, Weiss et al. 2004, Leblanc 2005c, Law et al. 2008). 
Each estimate corresponds to the LAI of an ESU for a representative temporal interval. 
There is substantial debate as to the most appropriate measurement method and 
sampling e.g. (Garrigues et al. 2008b, Ryu et al. 2010). Robust methods in terms of 
ensuring reasonable precision have been developed and tested within existing survey 
networks (refer to table 3). All of these approaches are acceptable for the production of 
reference LAI maps provided that they are applied for the targeted land cover and that 
the ESU LAI uncertainty is also estimated. Recommendations for uncertainty estimation 
of ESU LAI are outlined within in Section 3.2.3. 
 
 
 

Example 1: ESU Mapping Unit Specification - Destructive Sampling 
 
Destructive sampling of all vegetation within ten 1m2 quadrats in a 10m diameter plot could 
provide LAI estimates for an ESU corresponding to each quadrat. In this case each ESU will 
have high measurement accuracy but the precision of each measurement is not easy to 
quantify since there is no replication. Quadrat level LAI information is not useful for direct 
comparison to global LAI products or even ancillary data (e.g. airborne imagery) unless the 
LAI within the ESU is spatially representative. Rather, the ESU should be defined as the 10m 
diameter plot at the expense of potentially increased measurement error. In this case the 
replicate sampling within the plot can be exploited to estimate measurement precision. 
 

Example 2: ESU Mapping Unit Specification - LAI-2000 Row Crops 
 
The 1m tall row crop surveyed in Figure 4 using the LAI-2000 falls within a 100m x 100m field 
with uniform planting and site conditions. The Licor manual suggests at least 23 
measurements are required for a +/-10% precision for estimated LAI. To satisfy this 
requirement the sampling scheme shown in figure 4 should be extended along rows to 
include at least two more measurements per row (24 total). This would provide an ESU on 
the order of 20m x 20m within the field. Ideally a replicate ESU would be located in the field 
and surveyed by a different instrument and operator to quantify measurement error assuming 
within field LAI variation is small. 
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Table 3: In-situ LAI guidelines. 

Name Destructive Land Cover Citation 
AAFC No Short crops Liu et al. 2013 

BIGFOOT Forest No  
Crops Yes All Cohen et al. 2006 

BOREAS 
Destructive Yes Forest Gower et al. 1997 

BOREAS Non-
Destructive No Forest Chen et al. 1997 

CCRS 
CANEYE No All Fernandes, 2012 

CCRS DHP No Forest, tall crops Leblanc 2008 
CCRS TRAC No All except short herbs Leblanc 2005 
CCRS Tundra Yes Short herbs Chen et al. 2009 
CONECOFOR Yes Deciduous forest Cutini 2002 
DECAGON 
Ceptometer No Short Herbs and crops Decagon 2012 

FLUXNET Forest No  
Crops Yes All except short herbs Chen et. al. 2006 

FUTMON Both Forest Futmon, 2009 

GTOS Forest No  
Crops Yes All except short herbs Law et al. 2008 

Helsinki 
University No Forests Majasalmi et al. 2012 

INRA Row 
Crop No Short crops and herbs Baret et al.2010 

LICOR LAI-
2000/2200 No All except short herbs LICOR 2010 

 Ryu /Nilson No Forest Ryu et al. 2010. 
Nilson and Kuusk, 2004 

UNECE Both Deciduous forests Pitman et al. 2010 

VALERI No All 
Weiss et al. 2004 
Weiss 2002 
Garrigues et al. 2006 

This table lists current published methods for in-situ survey of leaf area index for an Elementary 
Sampling Unit.  The column headers are: 'Name' which indicates the CEOS LAI CAL/VAL acronym 
for the method, hyperlinked to the guideline document, 'Destructive' indicates if the method 
involves destructive sampling as a primary requirement, ‘Land Cover’ indicates the land cover for 
which the method has or potentially could be applied, and ‘Citation’ indicates the reference for the 
method within the CEOS LPV Good Practices document. Note that conifer forests require 
correction for needle clumping, see Stenberg (1996) where the protocols do not provide details. 
See Appendix A for full URLs for each method. 
 
 
 
Qualitative approaches can also be used to assign lower or upper bounds to LAI based 
on land cover and in situ datasets. For example, based on a global survey of in situ LAI 
(Asner et al. 2003) one can assign a minimum and maximum range of LAI as a function 
of land cover class (Table 4). This approach will have low accuracy in many instances 
but may be sufficient if the represented land cover class is a small proportion of the 
reference map. 
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Table 4: Range of LAI as a function of land cover (after (Asner et al. 2003)). 

Land Cover Class Minimum LAI Maximum LAI Restrictions 
Crops 0.2 8.7 None 
Desert 0.2 2.8 None 
Forest – Needle leaf 0.01 15 None 
Forest – Broadleaf 0.5 11.6 None 
Grasslands - Prairie 0.3 5.0 North American only 
Plantation 1.6 18.0 Not prior to leaf emergence 
Shrubland 0.4 4.5 Not alpine or tundra  
Grassland - Tundra 0.2 5.3 Tundra biomes 

 

3.2.3 ESU LAI Accuracy  
 
The statistical significance of differences between reference LAI maps based on ESU 
LAI and a satellite-derived LAI estimate will depend on the uncertainty of the reference 
maps and thus, to some extent, the uncertainty of the ESU LAI estimates. ESU LAI 
uncertainty should be reported as both an accuracy error and a precision error since the 
former may persist during inter-comparison with products, while the latter may cancel 
out across multiple ESUs. 
 
Accuracy errors include best-case errors in the absence of measurement outliers and 
errors due to outliers in measurements. In the absence of local destructive sampling   
two good practices are recommended to quantify best-case errors. 
 

1. An estimate of the expected value of best-case accuracy error for ESUs should 
be derived from median and extreme errors reported in literature studies relying 
on destructive sampling over ESUs of similar size (order of magnitude area), land 
cover and if possible species. This estimate will be pessimistic in that it will 
possibly include precision error. This estimate should include uncertainty in 
correction for canopy clumping and NPV area. 
 

2. An independent estimate of the best-case accuracy error can be derived where 
feasible by comparing the LAI estimates over the same ESU using two different 
indirect measurement methods. This could mean the application of two methods 
using different angular sampling from the same instrument or two methods using 
two different instruments as long as their precision is comparable. This approach 
will tend to underestimate accuracy error in cases where methods share similar 
theoretical assumptions or correction factors for NPV. Nevertheless, it can serve 
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as a lower bound for accuracy error. 
 
In the majority of cases the reported ESU LAI corresponds to the mean LAI over 
replicated measurements within the ESU. In practice replicate LAI measurements will 
also include noise due to operator error (e.g. poor pointing of instruments, biased 
classification of digital photographs) that may only apply to a few measurements. Good 
practices for designing measurement protocols for reducing these biases are beyond the 
scope of this document. However, if within ESU LAI measurements are available over 
some ESUs, the difference between the mean and median LAI can serve as an upper 
bound on this accuracy error, due to outliers, assuming at least 50% of the 
measurements are unbiased in the first place. It is good practice to report the total 
accuracy error for each ESU LAI estimate as the Euclidean sum of the larger of the two 
best-case error estimates and the outlier error.  
 

3.2.4 ESU LAI Precision 
 
In terms of LAI product validation, ESU LAI precision is not as important as accuracy 
since spatially random ESU LAI errors will tend to cancel if unbiased spatial scaling 
methods are applied to estimate reference LAI maps. Nevertheless, LAI precision may 
be required as an input to these approaches or when ESU LAI is directly compared to 
LAI products.   
 
ESU LAI precision can be quantified using repeat sampling of measurements within the 
ESU using the same instrument type, protocol and canopy conditions. Precision error for 
the estimate of ESU LAI will decrease as the number of measurements increase and as 
the natural variation of LAI decreases (e.g. one can expect high precision over a uniform 
LAI region with even a few measurements). It is good practice to report the 95th 
percentile interval for the ESU LAI estimate as a statistic related to LAI precision. A 
formula providing a good approximation for relative precision error 𝛿 corresponding to 
the 95%th percentile  confidence interval of the ESU LAI is given in by (Licor 2010), 
Chapter 9)) and summarised here. 
 
 𝛿 = ! ! !

!"# !
           (5) 

 
Where, 𝑛 is the number of repeat measurements, 𝐷 is the standard deviation of the LAI 
within the ESU in the absence of measurement error and 𝑡 𝑛  is an approximation to the 
Student’s t distribution for a 5% probability: 

Example 3: ESU LAI Accuracy 
 
Assume Example 2 corresponds to a soybean crop with a mean LAI of 3.5 and median LAI 
of 2.5. The uncertainty of the LAI-2000 over soybean is on the order of ~0.5 based on 
comparison to destructive sampling (Welles et al. 1991, Malone et al. 2002) and ~0.5 units 
based on comparison to other instruments (Garrigues et al. 2008a). In this case the 
difference between mean and median LAI serves as a worst case accuracy error of 1.0 unit 
and the reported accuracy of 1.11 is the Euclidean sum of 0.5 and 1.0.  
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 𝑡 𝑛 = !

!.!"!#$%!!!.!!"#$
+ 2.9817       (6) 

 
The standard deviation of LAI, 𝐷, should be approximated as the standard deviation 
over the measurements although this will be an overestimate as it includes 
measurement error.   
Repeat measurements in each ESU should be located independent of the actual pattern 
of vegetation in the plot and in a manner to minimise overlap between measurements. 
This may be accomplished by random sampling when the ratio of measurement 
sampling footprint to plot size is small or by a regular sampling that spaces footprints to 
minimise overlap when the ratio of measurement sampling footprint to plot size is small.  
Since regular sampling satisfies both requirements it is generally accepted as a good 
practice in most ESU LAI protocols as long as there is some element of randomness in 
the position of the centre of each measurement and of the sampling pattern to ensure 
sampling is not biased towards accessible gaps in the vegetation.  
 

 

3.2.5  Upscaling of Reference LAI Estimates 
 
Accuracy assessment requires spatial matching of reference LAI and satellite LAI 
product estimates. While ESU LAI estimates can be used directly as reference LAI 
estimates without further spatial scaling, there are limitations to the approach. Firstly, 
satellite product mapping units can have length scales on the order of 1km while current 
in situ measurement methods are based on statistical models of vegetation density that 
may not hold as ESU size grows (Nilson 1971, Nilson 1999). Secondly, while ESUs with 
length scales on the order of 1km have been surveyed in landscapes with relatively 
constant vegetation patterns (Privette et al. 2002) the effort required limits the number of 
ESUs and hence both the precision and accuracy of comparison statistics. On a 
practical basis the current in situ LAI measurement networks use ESUs on the order of 
1ha in area or smaller e.g. (Law et al. 2008). 
 
Spatial scaling of ESU measurements can reduce uncertainties and increase the spatial 
extent of the reference LAI map. Spatial scaling methods generally fall into one of two 
categories: 1) data driven / structural and 2) functional approaches. Data driven or 
structural methods rely on latent variables (systematic unmeasured variables) to develop 
relationships between LAI and measured predictor variables. The simplest example 
being structural linear regression where there are measurement errors in both LAI and 
predictors. In this case latent variables are the underlying noise free predictors (Cheng 
et al. 1999). More complex data driven approaches include stepwise regression, 

Example 4: ESU LAI Precision 
 
Destructive sampling of all vegetation over ten 1m2 quadrats randomly sampled in a 10m 
diameter ESU gives a mean LAI of 4.0 and a standard deviation in LAI of 1.0. Then 𝛿 equals 
0.4 and the 95th percentile confidence interval for the ESU LAI is then [2.4,5.6].     
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mixtures of Gaussian models, neural networks and regression tree approaches that 
allow incorporation of multiple latent variables (Duda et al. 2000, Hastie et al. 2011).   
 
Studies have investigated the use of spatial statistics (e.g. location) during upscaling 
through a family of kriging techniques (Garrigues et al. 2006, Martinez et al. 2010). The 
studies indicate that adequate performance with kriging methods requires a spatial 
covariate such as the normalised difference vegetation index (NDVI). In this case the 
additional gain from including spatial statistics may be small in comparison to simply 
imposing a landcover-based stratification. Nevertheless, it is good practice to include 
spatial statistics within structural scaling where there is a priori basis for their application 
(e.g. smoothly varying LAI patterns).  
 
Functional upscaling involves use of a functional equation to relate predictor variables to 
LAI without the use of latent variables (Cheng et al. 1999). For example, a linear 
equation could be used to relate LAI to a spectral vegetation index. It is good practice to 
use functions that describe causal relationships based on physical principles. For 
example, simplification of the radiative transfer equation leads to a logarithmic functional 
relationship between LAI and the NDVI (Baret et al. 1991). A more complex functional 
approach is to perform non-linear inversion of a radiative transfer model whose 
parameters have been constrained using observations over ESUs (Verger et al. 2011). 
 

 

Example 5: Structural Upscaling 
 
The VALERI network (Baret 2012) uses a moderate (25 to 50) number of ESUs located 
within a 3km x 3km region. ESUs are located using a stratified random sample designed to 
match the cumulative distribution function of a surrogate for LAI (e.g. a vegetation index) 
over each dominant land cover class (e.g. forest, crop, grass). A robust multivariate 
structural regression is used to produce a transfer function relating multi-spectral 
measurements over the region with ESU LAI. The transfer function is only applied within the 
3km x 3km region. This approach is good practice considering the high ESU sample density 
and the availability of prior information during sample allocation. 
 
A typical VALERI site corresponding to an agricultural region in France is shown in Figure 5.  
While the spatial distribution of samples is relatively good, the comparison of the cumulative 
distribution of ESU NDVI to other random sampling trials indicates that very low LAI 
conditions are not sampled sufficiently. Normally the observed deviation would not be 
acceptable for a reference map. However, in this case, these areas correspond to bare 
fields that were assigned an LAI of 0. 
 
The selected transfer function corresponded to a linear regression of LAI versus NDVI. As 
Figure 6 indicates, the transfer function provides relatively uniform distribution of residuals 
with a few outliers. As a result of the univariate regression most of the region falls within the 
spectral convex hull – the exception being the unsampled bare fields. The final LAI map 
indicates substantial spatial variability in LAI within the 3km x 3km domain that would 
otherwise make direct comparison between a single ESU or a few ESUs and a medium or 
coarse resolution satellite product difficult. 
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Figure 5: VALERI ESU sampling over a 3km x 3km agricultural region.  Panel on left indicates 
location of samples over a colour composite satellite image. Panel on right compares the 
cumulative frequency distribution of sampled NDVI at ESUs (red dots) versus extreme ranges 
based on Monte-Carlo ESU sampling with the same sample size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Outputs of VALERI reference LAI mapping process. Left panel shows scatter plot of 
predicted versus actual LAI based on robust linear regression. Outliers are indicated as 
alphanumeric symbols. Centre panel shows mask of areas within (blue) and outside (red) 

LAIref Outside Inside
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spectral convex hull of ESU data. Right panel shows final reference LAI map. 
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Example 6: Functional upscaling 
 
The CCRS approach for production of reference LAI maps relies on functional relationships 
between a spectral vegetation index and LAI for specific groups of land cover classes in a 
restricted geographic region (Fernandes et al. 2003). Figure 7 shows a region consisting of 
mixed boreal forest and a large open pit mine over which a reference LAI map is required.  
An initial field survey indicated either forest or shrub cover with moss or herbaceous 
understory and a maximum LAI of 4.0. Under such conditions separate linear functional 
relationships are expected between LAI and the reduced simple ratio (RSR) for needle leaf 
and broadleaf sites (Brown et al. 2000, Chen et al. 2002). Accessible regions for field surveys 
were identified in the north, centre and south regions of the study area to provide a spatial 
convex hull large enough to encompass the mining activity. For each region, ESUs were 
uniformly sampled with respect to RSR based on a previous satellite image. A total of 200 
ESUs were sampled. 
 
Separate transfer functions were developed using the Thiel-Sen functional regression 
(Fernandes et al. 2005) for broadleaf and needle leaf cover classes and applied to RSR data 
over the region using a land cover map. The systematic and random accuracy components 
were modelled as described in Section 3. Systematic error was generally below 0.5 units 
except in areas of high density broadleaf where the transfer function confidence interval was 
large due to a clustering of sampled ESUs around higher LAI values. 
 
One could have adopted either more complex functional forms or additional input features.  
The decision to employ a univariate linear prediction was based on the following criteria. 
 
Are the assumptions of the transfer function satisfied? 
Figure 8 shows the transfer function used to relate LAI to RSR for needle leaf land cover 
using a robust Thiel-Sen regression (median absolute deviation 0.71; R2 = 0.61). The 
regression assumption related to linearity was confirmed by visual assessment of residuals 
and by the fact that the 95th percentile confidence interval of the slope was non-zero. 
 
Can the transfer function be improved by adding more features? 
A multivariate linear regression (median absolute deviation 0.65; R2 = 0.64) was also used to 
establish a transfer function of LAI as a function of two vegetation indices (simple ratio (SR) 
and infrared simple ratio (ISR)) that are also known to be linearly related to LAI over needle 
leaf forests for low to moderate levels of LAI (i.e. LAI up to 4.0). The multivariate regression 
provided a small decrease in residuals in comparison to the univariate regression but as 
figure 8 indicates, the prediction confidence interval doubled. The prediction confidence 
interval represents a spatially persistent accuracy error that will not cancel out during 
aggregation. As a result, the accuracy error of the aggregated reference LAI map based on 
both the ISR and SR features will be twice the magnitude of the map based only the ISR 
predictor. 
 
Does adding more features substantially reduce the area within the convex hull of 
features? 
As figure 9 indicates, the area falling within the convex hull of the SR and ISR features 
sampled by the ESUs is ~75% than the area when using only the RSR. More importantly, the 
reduced areas are spatially disjoint so that the area over which the reference map can be 
spatially aggregated using simple (e.g. rectangular) mapping units when using both SR and 
ISR will be substantially less than 75% of the area when using the RSR only. 
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Figure 7: CCRS approach for reference LAI map production over a Boreal forest region with an 
open-pit mine (purple areas). ESUs are indicated as yellow crosses. The white outline 
corresponds to the spatial convex hull containing ESUs dilated by 1km. ESUs outside the 
convex hull did not correspond to land cover used for transfer functions (needle leaf or broadleaf 
forests). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8:  The left panel shows the transfer function for the needle leaf land cover class 
developed using a robust Thiel-Sen univariate linear regression (solid line) with its 95th percentile 
prediction confidence interval. The right panel compares the size of the prediction confidence 
interval of the univariate regression shown in the left panel with a transfer function based on 
multivariate linear regression using two vegetation indices (SR and ISR).   
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3.2.6 Sample Size 
 
Sample size, n, is a primary concern with reference ESU sampling given the expense of 
manual LAI measurements. Increasing sample size will generally increase the precision 
of the upscaling model and hence decrease the size of the confidence interval of 
predictions of reference LAI estimates.  Smaller prediction confidence intervals lead in 
turn to smaller spatially persistent errors in the reference LAI map. 
 
For a univariate linear functional model the confidence interval will decrease in 
proportion to 1/√𝑛 suggesting diminishing reductions in accuracy error after n~100. The 
same argument holds when using samples to validate reference maps produced using 
inversion of physically based radiative transfer models since their output LAI is assumed 
related to ESU in situ LAI using a 1:1 function.   
 
A functional model with m predictor variables would require mn samples to achieve the 
same precision (Good et al. 2009). This implies that ~1024 samples would be required 
for a 2 predictor linear model to achieve the same precision as a univariate model based 
on 10 samples. To our knowledge there has been no measurement campaign with over 
1000 local ESUs. This strongly suggests that it is good practice that models with a 
minimum number of predictor variables be adopted unless their accuracy is significantly 
worse (e.g. the predictions of the univariate model exceed the 95th percentile confidence 
intervals of prediction of the multivariate model). The choice of variables to use and the 
need for accuracy in their measurement may be determined from radiative transfer 
theory aided by site expertise. 
 
For linear structural models where the transformation from predictor to latent variables is 

LAI
0	  	  1	  	  2	  	  3	  	  4	  	  5

Figure 9: Convex hull of reference map area using only RSR 
(black border) together with areas falling outside the convex hull 
when using both SR and ISR mapped as black. White areas are 
designated as LAI 0 based directly on land cover. 
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specified a priori the prediction confidence interval will have similar behaviour as for 
functional models with m now corresponding to the number of latent variables (Westland 
2010). As such it is good practice that no more than one latent variable be adopted 
unless the model accuracy is significantly worse than with increased latent variables. 
However, some data driven approaches attempt to define multiple latent variables using 
parameters calibrated from observations (e.g. neural networks, regression trees, radial 
basis function methods). The calibration process will then require additional samples to 
provide the same prediction confidence intervals as the case where the parameters are 
defined a priori. For example, with partial least squares structural linear regression the 
additional sample size is proportional to the square of the ratio of predictor to latent 
variables and is bounded below by n = 700 (Westland 2010). To our knowledge there 
has been no measurement campaign with over 700 local ESUs. As such it is good 
practice not to use data driven approaches that require calibration of latent variables to 
define transfer functions (e.g. neural networks) unless these approaches provide 
significantly greater prediction accuracy than models with fixed latent variables (e.g. 
multivariate regression). 
 

3.2.7 Sampling Design 
 
Most reference networks are based on ESUs located for purposes other than LAI 
validation, so that ESU sampling is not designed optimally. However, it is worthwhile to 
identify preferred sampling designs in case the design is flexible or the network owners 
are prepared to change their design but also to identify the appropriate scaling approach 
for the available sampling. 

 
Sampling design should satisfy the assumptions of the transfer function used to produce 
reference maps. All transfer functions require two fundamental sampling requirements to 
ensure they are unbiased over areas other than the sampled ESUs: 
 

1. All population units have a non-zero chance of selection 
2. Selecting one unit does not eliminate the possibility of selecting another unit 

 
These requirements can be met by ensuring some level of randomness in the location of 
samples and ensuring sufficient sample size to avoid a trade-off in sample allocation 
such that a specific land cover within the reference area is completely ignored. In this 
sense it is good practice to stratify sampling by land cover and if possible LAI to ensure 
sufficient samples are present before the transfer function is calibrated. Moreover, the 
ESU locations within each stratum should involve sufficient randomness so that any LAI 
level in the stratum, but not necessarily any location, can be observed.   
 
In some cases, sampling design can be further optimised to increase the precision of the 
transfer function based estimates. The simplest case is represented by the allocation of 
samples across different strata to minimise the variance of strata means. (Widlowski et 
al. 2007) developed an optimal allocation model to determine the number of samples  𝑛! 
for stratum : 
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𝑛! =
!!!!/ !!
!!!!/ !!!

!!!
ℎ = 1,… , 𝐿        (7) 

 
Where, 𝑁!is the number of sampling units in stratum , 𝜎!is the standard deviation within 
stratum , 𝑐!is the unit cost within stratum , and 𝐿 is the total number of strata. This 
approach requires prior specification of the cost of sampling in each stratum and the 
variance of LAI within the stratum. In the absence of this information this approach 
defaults to sampling proportional to the stratum area. Extending this approach to 
ordinary least square (OLS) structural regression leads to mean-sampling where the 
sampling is allocated proportional to the relative frequency of some indicator of the LAI 
distribution. Since a linear model is assumed between auxiliary variables and LAI the 
relative frequency can be estimated using one selected auxiliary variable.   
 
Functional approaches assume that there is an underlying function relating regressors 
and LAI. The function may be simple (a linear equation) or non-trivial (a radiative 
transfer model). In either case a uniform sampling design is required to ensure a 
consistent or unbiased transfer function (Cheng et al. 1999). This implies that it is good 
practice to allocate samples to strata sampled uniformly over the range of LAI and land 
cover conditions rather than proportional to the area covered by each stratum. From a 
practical point of view uniform sampling will be impacted by the cost of samples. So a 
two stage approach may be required beginning with a modest number of uniform 
samples to meet the requirements of the functional regression, followed by additional 
replicates allocated based on cost (e.g. in accessible clusters) to increase the precision 
of the transfer function estimate (Cheng et al. 1999).     
 
Cluster sampling can be a cost effective strategy for both functional and structural 
models as long as the cluster centres are located according to the optimal allocation rule 
for the model. In some instances clusters may be sufficiently dense to allow for a direct 
scaling of reference LAI based on their expected value (mean or median depending on 
the potential for outliers) that can serve as a local higher accuracy reference LAI value in 
addition to the larger area reference map. 
 
To ensure that the accuracy of the transfer function applies during prediction it is good 
practice to restrict the prediction to the spatial, temporal and thematic convex hull of the 
calibration data. The spatial convex hull restricts the interpolation of reference map 
estimates to regions that should have similar climate and species conditions. The 
temporal convex hull restricts interpolation to the growing season i.e. conditions similar 
to the sampled ESU LAI. LAI reference maps can also be applied to anniversary 
intervals where there is prior information justifying the stability of LAI between different 
years for that interval. The thematic convex hull restricts interpolation to the convex hull 
of the data with respect to the joint distribution of auxiliary variables (Weiss et al. 2004, 
Martinez et al. 2010). This could correspond to the multispectral convex hull of the 
training data when multispectral images are used for scaling. It can also include 
consideration of nominal thematic partitions such as land cover. It is good practice to 
map the convex hull of the training data using the same auxiliary variable layers required 
for the reference map.   
There is a fundamental tradeoff between the number of auxiliary variables and the area 
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of the reference map falling within the training data convex hull due to the Hughes 
phenomenon (Hughes 1968). The Hughes phenomenon suggests that the proportion of 
the reference map falling within the convex hull will decrease as the number of 
independent auxiliary variables increases (Schowengerdt 1997). Global LAI validation 
implies the need to maximise the reference map sample size. As such it is good practice 
to use transfer functions that provide the largest mapped area within the training data 
convex hull as long as the reference map accuracy is sufficient to produce useful 
validation statistics. The exact tradeoff between accuracy and sample size is data 
dependent but can be assessed on a case by case basis. It is good practice to use the 
transfer function corresponding to the larger convex hull in the event that two transfer 
functions have similar accuracy. 
 

3.2.8 Reference Map Accuracy 
 
The reference map accuracy (technically this is the total measurement error, see section 
5.2.1) corresponds to the size of the prediction error of LAI values in each mapping unit.  
The accuracy error can be reported as the median absolute deviation between predicted 
and actual LAI. However, since this deviation will vary with LAI it is good practice to 
report the accuracy error as a function of LAI (e.g. in ranges of 1.0 LAI unit). Accuracy 
error includes both spatially random and systematic components. Ideally one could 
employ a spatial analysis of residuals to quantify both components. ESU sampling 
density is usually insufficient to quantify the spatial pattern or residuals. When linear 
transfer functions are employed, the prediction confidence interval can be used to 
quantify the systematic component at a given LAI level. In this case, it is good practice to 
report both the systematic component of accuracy and the remainder after removing this 
component from the total accuracy.   
 

3.2.9 Reporting of Statistics 
 
Both data driven and functional upscaling approaches should report prediction accuracy 
statistics on a reference LAI mapping unit basis. It is good practice to report the 50th 
percentile and 95th percentile absolute residual as well as to plot residuals versus LAI for 
each stratum. Where possible, the confidence interval for the accuracy should be 
quantified using either resampling cross-validation or using the confidence interval of the 
linear prediction. Precision of the reference estimates is not a major issue since current 
validation protocols do not include resampling from the map. However, the spatial 
pattern of residuals is important since random spatial residuals would tend to cancel 
when upscaling to mapping units used for product validation. Generally speaking ESU 
sampling designs for most field experiments do not allow for detailed analysis of the 
spatial pattern of residuals (the exception being the BIGFOOT design reported in 
(Cohen et al. 2006)). However, to facilitate estimation of this bias during product 
validation, a table of residuals together with location and land cover condition should be 
included.   
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4 GENERAL STRATEGY FOR VALIDATION OF GLOBAL LAI 
PRODUCTS 

4.1. Current Products 
 
Global and regional LAI products are commonly generated from moderate (250m-500m) 
to coarse (>1km) resolution visible and near infrared (300nm – 2500nm) passive optical 
satellite imagery (Garrigues et al. 2008a, Camacho et al. 2011, Fang et al. 2013). More 
recently systematic production of medium resolution (10m – 100m) LAI products has 
been proposed (ESA 2007, Ganguly et al. 2012); see 
http://lpvs.gsfc.nasa.gov/producers2.php?topic=LAI. 
 
Current systematic global LAI products require as input either bi-directional surface 
reflectance (BRF), directional-hemispherical surface reflectance (DHR) (black-sky 
albedo) or bi-hemispherical reflectance (BHR). Some LAI algorithms are specific to 
particular nominal acquisition geometry and therefore require a further angular 
normalisation process. All of the products require screening for contaminated pixels due 
to clouds, cloud shadows and detector failures. Often, this screening is either performed 
entirely, or at least refined, using multi-temporal composites based on spectral criteria. 
Such compositing will bias product retrievals to snow-free, peak vegetation density 
conditions in the composite window. Even with cloud screening and temporal 
compositing, most current multi-year products include a temporally smoothed version 
based on removal of outlier LAI values and temporal interpolation. Rather than discuss 
the hypothetical merits of each product, this document focuses on identifying how noise 
in the input data, geometric characteristics, and temporal aspects of products impacts 
LAI validation. 
 

4.1.1 Uncertainties Related to Input Data 
 
In this section sources of uncertainties in products resulting from input data are 
discussed. The majority of products rely on atmospherically corrected bi-directional 
reflectances – based on instantaneous multi-angular sampling and daily or multiple-day 
compositing of acquisitions with varying illumination-view geometry. It is relatively 
straightforward to generate error models for LAI retrievals as a function of input 
reflectance data uncertainties (Yang et al. 2006, Fang et al. 2013). For example, figures 
10 and 11 show the spatial and temporal pattern of product retrieval uncertainties 
reported by producers for three different global products. However, the range of 
uncertainties is not entirely realistic both within a product (e.g. zero error in northern 
regions when snow is present) and between products (e.g. the JRC-TIP uncertainties 
can be much larger than other products over some land cover types due to differences 
in specification of uncertainty terms). It is likely that these uncertainties are often not 
perfectly specified, especially over varying land cover, atmosphere and acquisition 
geometry conditions. In such cases it would be useful to define a suite of canonical 
uncertainty scenarios. Table 5 offers a candidate range of parameters over which 
sensitivity analysis should be conducted.   
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Figure 10: Average uncertainty for three global LAI products between 2003 and 2010 for 
January (left) and July (right) as stated by the producer (Fang et al. 2013). 
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Figure 11: Climatologies of producer uncertainties for global LAI products between 2003 and 
2010 over major global biomes. The y-axis is the uncertainty in LAI units. From (Fang et al. 
2013).  
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Table 5:  Recommended parameters with suggested ranges for sensitivity analyses for LAI 
products. 
 

Quantity Levels 

LAI 0 through 10 

Land Cover 

Evergreen needle leaf forest, evergreen broadleaf forest, 
deciduous broadleaf forest savannah and shrubs and barren 
regions, herbaceous crop, forbes, wetland or regions with >25% 
water cover sub pixel 

Radiometric calibration error Sensor specific but within +/- 1.0 RMSE (root mean square error) 

Geometry 0,35,70 degrees solar zenith angle for nominal and ±1 sigma  
view zenith angle in principal and perpendicular plane 

Aerosol optical depth at 
550nm 

Uncertainty of 0.1 unit around a nominal level of 0.1 and a hazy 
level of 0.5 

Canopy condition ±25% and ±50% uncertainty in specific chlorophyll, dry matter 
and moisture content 

Understory reflectance Sensitivity of LAI to change in understory from sand to clay to 
snow using standard reference spectra 

Geolocation Sensitivity to terrain slope of 10 degrees and 20 degrees 
 
 

4.1.1.1 Sensor Noise 
 
Modern optical imagers have sufficient quantisation and signal to noise ratio that sensor 
noise is far less of an issue than clear sky uncertainty. However, for very dark targets 
(i.e. dark soil, dense vegetation) and at low solar zenith angles, sensor noise effects 
should be quantified by sensitivity analysis of LAI algorithms applied to the scenarios 
given in table 4 including expected levels of sensor noise.   
 

4.1.1.2 Clear Sky Uncertainty 
 
In water vapour windows within the electromagnetic spectrum corresponding to spectral 
measurements used in most LAI algorithms, the clear sky top of atmosphere (TOA) 
radiance in visible and near-infrared wavelengths is impacted by: surface reflectance 
and its anisotropy (BRDF); the reflectance of adjacent surfaces; atmospheric 
transmission; and path radiance. Over flat surfaces and at moderate resolution (250m – 
1km), uncertainties due to unaccounted acquisition geometry and transmission effects 
are typically smaller than the path radiance, especially in the visible and red-edge 
regions of the spectrum. Path radiance is driven primarily by aerosol properties 
suggesting that the impact of error in the specification of aerosol type and optical 
thickness must be quantified.  
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4.1.1.3 BRDF Modelling Uncertainty 
 
Many current LAI algorithms utilise HRDF or BRF with observed sun and view 
geometries as input data and therefore, do not rely on explicit BRDF modelling 
(examples include MODIS, MISR and GEOLAND2 LAI products). For algorithms utilising 
nadir BRDF-adjusted reflectance (NBAR) and intrinsic albedo quantities (e.g. white-sky 
and black-sky albedo), the effect of BRDF model selection (e.g. linear, empirical, 
analytical) should be quantified across a range of surface conditions (e.g. flat vs. sloped 
surfaces) and dominant vegetation cover types. This can be performed using current 
global BRDF datasets (e.g. MODIS, MISR, and POLDER instruments) using ray-tracing 
simulations and by algorithm sensitivity analysis. 
 

4.1.1.4 Canopy and Understory Modelling Uncertainty 
 
There is currently an ongoing process (Widlowski et al. 2007) to radiative transfer 
models used for LAI retrievals. However, the process is still developing a framework for 
evaluating model inversion and for testing operational model inversion code. Prior 
assumptions regarding canopy leaf conditions and understory reflectance often have a 
large impact on LAI estimation and need to be quantified for their impact on LAI 
algorithm performance. In cases where a model that includes leaf and understory 
parameters is used, an algorithm sensitivity analysis should be conducted as well as 
comparison of retrievals over areas with rapidly changing understory reflectance (snow 
cover transitions) or leaf reflectance that can be qualitatively detected in imagery. 
 

4.1.2 Geometric Considerations 
 
Current LAI products are gridded in map projection systems rather than having each 
mapping unit associated explicitly with a geolocation field. Depending on the projection 
chosen, each gridded mapping unit (pixel) may have varying shape or area. For 
example, the Plate Carree projection (e.g. GLOBCARBON product, (Plummer et al. 
2006) implies pixel width decreases with increasing latitude. In contrast, the Integerized 
Sinusoid Projection (e.g. MODIS product) will produce duplicate pixels with elongated 
parallelogram shapes when represented in Plate Caree projection at high latitudes. 
These considerations are important for both product application and validation and 
should be included in any spatial accuracy assessment.   
 
LAI products are based on satellite measurements whose effective projected 
instantaneous field of view (EPIFOV), in general, will not exactly match the mapping 
unit. This occurs for three reasons listed below: 
 

1. The change (usually growth) in pixel size further from nadir scan angles, often up 
to five times the nadir value for wide swath whiskbroom sensors. 

2. Terrain effects change the shape, nominal location and to a lesser extent size of 
the ground projected instantaneous field of view (PIFOV). Certain processing 
chains (such as the MODIS MODAPS system) apply orthorectification to provide 
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a precise nominal location for all terrain. However, the majority of sensor 
processing chains do not include orthorectification by default. In any event no 
current processing chain accounts for the variable shape of the PIFOV. 

3. Most LAI products are derived from reflectance measurements resampled to a 
final projection system and geoid. The resampling, often done with a bilinear 
interpolation or a cubic convolution, induces a low pass filter effect that tends to 
reduce information at high spatial frequencies and effectively decreases the scale 
of the information. All of these effects are a concern for the producer of LAI 
products. However, when one is concerned with diagnosing the benefit of 
different algorithms with the same input satellite reflectance data, they should be 
included in the final error analysis.   

 

4.1.3 Temporal Considerations 
 
GCOS specifies a target of bi-weekly LAI values derived from daily products. As such, 
ideal validation should include evaluation of differences at daily and bi-weekly time 
steps. However, current products range in reporting intervals from 4 days (Shabanov et 
al. 2005) to monthly (ESA 2007). Inter-comparisons can usually be performed by 
temporal aggregation of fine resolution products, but reference datasets correspond 
either to the day of the in situ data or the day of the auxiliary imagery used to scale up 
the in situ data. This represents a potential temporal mismatch that should not be 
attributed to an error for a product under assessment. LAI products should be inter-
compared on a standard temporal aggregation interval and direct validation should be 
performed with nearest temporal neighbour interpolation where required. Each direct 
validation reference site should include the temporal variability expected due to temporal 
mismatch. This variability can be estimated using multi-temporal in situ measurements 
or by evaluating time-series of ensembles of LAI products. 
 

4.1.4 LAI Product Definitions 
 
Differences in the definitions of quantities represented in the currently available LAI 
products have led to substantial variability across performance assessments. In some 
cases, products and reference data both used LAIe leading to potentially optimistic 
performance statistics since clumping does not have to be included. In other cases 
products that retrieve LAI for both overstory and understory, as per the definition, were 
compared to reference measurements only from the overstory and hence tended to 
show overestimation (e.g. CCRS VGT total LAI versus MODIS collection 4 overstory LAI 
compared in (Garrigues et al. 2008a)). It is possible to qualify and discuss the 
comparison of LAI products and reference data that have different LAI definitions by 
carefully modelling these differences. However, it is clear from the perspective of GCOS 
that acceptable products should be compared to reference LAI datasets corresponding 
to the total LAI as defined by GCOS. Unfortunately, there are limited reference datasets 
available that actually report LAI – many correspond to an PAIe and others, even when 
corrected for clumping, are PAI due to the optical instruments used. It is good practice in 
this regard to specify clearly what the product definition is and conduct inter-



 

-45- 
 

comparisons taking into account any differences.  
 

4.2 Status of Current Validation Capacity 
 
Validation of global LAI products has progressed from producer driven studies to CEOS 
sponsored efforts to ongoing validation of operational products (GEOLAND, (Camacho 
et al. 2012); JRC-TIP, (Pinty et al. 2011)). Initially, producers such as the NASA MODIS 
Science team, CCRS Environmental Monitoring Section, GLOBCARBON (ESA Data 
User Element, DUE) and the CYCLOPES teams conducted product specific validation. 
Through the efforts of NASA/ORNL, ESA/INRA and CEOS, community accessible 
reference LAI data sets have been made available 
(http://lpvs.gsfc.nasa.gov/lai_intercomp.php). At the same time, a range of approaches 
for performing inter-comparison and direct validation have been developed (Morisette et 
al. 2006, Garrigues et al. 2008a, Camacho et al. 2010, Fang et al. 2013). From these 
approaches arise three fundamental components for a validation protocol: 1) direct 
validation over upscaled in situ reference datasets; 2) inter-comparison of products over 
a representative global sample; and 3) statistics related to the temporal completeness of 
LAI products. 
 

4.3 Validation Requirements 
 
A general validation strategy should be capable of testing products for compliance with 
GCOS requirements. A distinction is made between the strategy, corresponding to a 
sampling design, a definition of key reference datasets and inter-comparison methods, 
versus the data required to allow this strategy to test if products meet either threshold or 
goal requirements.   
 
The validation strategy has five major criterion detailed in the following sub-sections: 
 

1. Direct validation on a global basis representative of seasonal conditions and 
estimation of accuracy in LAI units. 

2. Quantify the representative LAI accuracy estimate over areas or time periods 
without reference datasets. 

3. Quantify the precision of LAI estimates over space and time on a globally 
representative basis. 

4. Quantify the long term (inter-annual) stability in LAI products. 
5. Identify issues with algorithms or datasets that may cause biases in LAI retrievals. 

 
 

 

4.3.1 Direct Validation on a Global Basis Representative of Seasonal 
Conditions and Estimation of Accuracy in LAI Units 

 
Direct validation should be performed using available reference datasets traceable to in 
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situ reference measurements accompanied by an associated assessment of their 
uncertainty. Estimates should be upscaled using one of two auxiliary variables: high 
resolution land cover maps or high resolution satellite/airborne measurements. The 
upscaling should take into account the possibility that the upscaled product contains 
regions where in situ data are not representative. One of three strategies should be used 
for filling in these regions: 1) heuristic estimates from look up tables (e.g. water has LAI 
0); 2) estimates based on a biome specific radiometric relationship; and 3) estimates 
based on a maximum and minimum possible range of LAI. Gap filling of reference maps 
should be limited in spatial extent (e.g. only for small linear features such as roads, 
streams, pathways). In addition uncertainty in the auxiliary variable used to scale in-situ 
LAI should be accounted. Reference LAI maps should be produced using an approach 
that follows one of the upscaling protocols listed in Section 3.2.2 or is justified as being 
equivalent or superior to those protocols in terms of accuracy. The reference maps 
should be aggregated so as to minimize the impact of geolocation and binning 
uncertainty when performing comparisons with products. Paired values of spatially and 
temporally coincident product and reference values should be tabulated. The global 
subset of paired values should be compared using appropriate robust statistics and 
visualisation of residuals (Section 5.2). 
 

4.3.2 Quantify the Representative LAI Accuracy Estimate Over Areas or 
Time Periods Without Reference Datasets 

 
There are three issues with representativeness.  

1. The precision of the accuracy estimate assuming the reference data are globally 
representative.  

2. The spatial extent of the comparison.  
3. The temporal domain that the comparison applies to.  

 
The precision of the accuracy estimates themselves can be modelled using the 
confidence interval accuracy statistics. The spatial representativeness of accuracy 
statistics can be quantified in two stages. Firstly, the spatial variability of the product 
accuracy over subsets of a biome with different reference datasets can be evaluated. 
Secondly, recognising that reference data may be a biased global sampling, a 
diagnostic of spatial and temporal representativeness of the accuracy statistics is 
required. There are two diagnostics proposed. The first order approach is to include 
areas with the same land cover, LAI and seasonal conditions as representative regions. 
A more rigorous approach is to use areas that have similar agreement with a global, 
seasonally continuous ensemble reference as with the areas with reference 
measurements. Currently there are insufficient independently generated global LAI 
products to support such an ensemble and hence inter-comparison to regional LAI 
products with higher accuracy and consistency are suggested in Section 5.2. 
 

4.3.3 Quantify the Intra-Annual Precision of LAI Estimates Over Space 
and Time on a Globally Representative Basis 
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LAI precision corresponds to variation in LAI estimates under constant in-situ conditions. 
Temporal precision will be evaluated by two approaches. For intra-annual precision, the 
deviation from linearity of midpoints of triplets as in (Camacho et al. 2012) is suggested. 
Spatial precision should ideally be quantified by computing the change in LAI over areas 
known to have temporally stable LAI patterns with high spatial variability. This 
information is not currently available so precision is currently estimated by statistics 
derived from the ensemble of regional correlations between successive product time 
slices. This represents a relative metric for comparing products until areas known to be 
temporally stable can be identified. 
 

4.3.4 Quantify the Long Term (Inter-Annual) Stability in LAI Products 
 
Current validation studies rely on a few (<10) sites with intra-annual measurements (e.g. 
(Garrigues et al. 2008a, Camacho et al. 2011, Ganguly et al. 2012). The majority of 
these sites are located at flux towers and ecological sites and with insufficient spatial 
sampling to provide high confidence in validation of current coarse resolution products. 
Until methods for continuous in-situ LAI survey are widely implements it is suggested 
that inter-annual stability be assessed by evaluating trends in product LAI over 3 x 3 
pixel targets that are expected to have vegetation cover during the local growing 
season. Further study is required to identify such targets and to identify the appropriate 
trend metrics to quantify stability.   
 

4.4 Challenges to Validation Strategy 

4.4.1 Insufficient Reference Data  
 
The limited availability of reference LAI data is fundamental, but not limiting to 
conducting global LAI validation. Spatial representativeness will grow with less 
expensive in situ survey methods and increasing use of LAI products in climate models. 
Temporal representativeness may be enhanced if phenological monitoring networks 
(such as the National Phenology Network (NPN) USA, Phenological Eyes Network 
(PEN) Japan and PlantWatch Canada) can be adapted to provide LAI information. 
Fortunately, there continues to be improvements in the representativeness of in situ LAI 
observations at flux towers e.g. European Initiative Integrated Carbon Observing System 
(ICOS) and US initiative National Environmental Observation Network (NEON). 
 
 

4.4.2 Insufficient Products to Generate an Unbiased Ensemble  
 
The small number of LAI products is a fundamental challenge for inter-comparisons 
since any ensemble of LAI products is likely to have biases due to both the small sample 
size and the fact that many products are related. This challenge could be lessened in the 
future by performing ensemble retrievals for products themselves or simply incorporating 
error statistics when computing the ensemble. However, at present we note that even 
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the IPCC (Inter-governmental Panel on Climate Change) General Circulation Models 
(GCMs) were originally a handful of models sharing very similar designs. The size of the 
ensemble should be incorporated in inter-comparison statistics. 
 

4.4.3 Thematic Differences in LAI Definitions   
 
Progress has been made recently in harmonising the LAI definition between CEOS, 
GTOS and GCOS. However, satellite products still differ in their quantities and in 
general do not match this definition. The provision and ongoing refinement of transfer 
functions between different LAI quantities as well as dedicated efforts on product 
transparency will provide traceability for comparisons. See Section 2.1 for the definition 
agreed between CEOS, GCOS and GTOS. 
  

4.5 Status of Current Validation Capacity 

4.5.1 Data 
 
Through the efforts of the CEOS LPV sub-group and its member Space Agencies, as 
well as a number of research groups, the global community now has open access to 
high spatial resolution (250m - 10km) global LAI datasets. However, these datasets 
have limitations. For example: 
 

• They include variable quality control levels, usually with no uncertainty bounds.  
• They are for limited time periods that do not all overlap.  
• Their LAI definitions are not always consistent across biomes.  
• They sometimes have limited valid retrievals under snow conditions.  
• They do not share consistent land-water masks.  

 
Nevertheless, (Garrigues et al. 2008a) demonstrated that a useful multi-year global 
inter-comparison was feasible at 10km resolution. This has been supported by further 
inter-comparisons by the GEOLAND2 project (Camacho et al. 2010, Camacho et al. 
2011).  
 
The ESA OLIVE system (On Line Validation Exercise, 
http://calvalportal.ceos.org/web/olive, (Weiss et al. Submitted)) has been designed for 
CEOS as a public system to allow producers of biophysical products to test their outputs 
against equivalents and against a set of validation data. OLIVE hosts extracts of current 
global LAI products over the sites shown in figure 1 (BELMANIP2 and DIRECT) 
(http://calvalportal.ceos.org/web/olive/site-description). The system implements a suite 
of comparisons including, where technically feasible, diagnostics recommended in this 
protocol.  
 
The state of reference datasets is currently not as well developed as the satellite-derived 
LAI products. International flux tower and LTER (Long Term Ecological Research) 
networks quantify LAI, but usually over areas far smaller than 1km2. These data are 
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archived within their networks but are not easily accessible to CEOS or LAI product 
producers. While GCOS has provided protocols for in situ LAI survey at local sites (Law 
et al. 2008), these methods may not be efficient for LAI validation. In contrast, regional 
and coordinated global networks (reviewed in (Morisette et al. 2006)) now provide 
consistently observed reference LAI fields at a small number (<100) of regions ranging 
from ~10km2 to ~100km2 (see Section 3.2). A concern with the regional networks is that 
they are not frequently revisited (for example, an annual visit to an evergreen forest is 
recommended to ensure the LAI field is constant over time).   
 
There are currently diverse data sets that could potentially contribute to a global 
reference dataset. These fall under the following categories: 
 

1. Local estimates of LAI or related quantities that cannot easily be scaled to 3 x 3 
pixel regions. 

2. Local estimates of LAI that have been scaled to at least 3 x 3 pixel regions.  
3. Datasets that identify the absence of any vegetation (LAI = 0) or the presence of 

vegetation above a certain threshold LAI. 
 
Under the first category fall data collected within the global FLUXNET and LTER 
networks, the regional FOREMON network, and coordinated regional or global scientific 
experiments. These larger communities have data access points and available 
databases. In contrast, many regional scientific experiments collect LAI data that is not 
catalogued in a common area and are therefore difficult to access for global validation. 
 
Under the second category fall data collected for global and regional LAI validation.  
Most of these data are catalogued if not archived within the VALERI and ORNL 
databases although some agencies (NASA, CCRS, CSIRO, ESA) have funded projects 
that keep their own databases. Typically, these datasets correspond to ~30m resolution 
LAI surfaces produced by calibrating optical satellite imagery with in situ measurements 
over ESUs located using a stratified random sampling. In some cases (e.g. CCRS) the 
data are provided in a database with a relatively large (>100km2) spatial coverage but 
with a mask indicating the region the data are deemed representative.   
 
The third category includes data that could be used for LAI validation, but would first 
require a consensus that they are indeed accurate descriptions of vegetation conditions.  
The foremost would be available water surface coverage datasets both globally and at 
continental scale. While there may be some variability in coastlines one can expect that 
a reasonable spatial buffer could eliminate such uncertainty. Secondly, would be 
glaciers, as recorded by the World Glacier Monitoring Service through the Global Land 
Ice Monitoring from Space (GLIMS) activity. Thirdly would be deserts and exposed rock 
areas mapped in global and national land cover maps. These three datasets would 
require systematic screening for long-term changes but, on a global scale, should be 
probative of zero LAI conditions throughout the year. In addition, one could also take 
advantage of current maps of dense evergreen vegetation.  In this case, a safe 
minimum LAI threshold could be established based on coincident local or image based 
estimates. 
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Data from the first two categories can, in principle, be combined during comparisons if 
care is taken to account for spatial mismatch between local data and global products 
and for the large sample size of many regional products. However, separate 
comparisons should be performed with the third category both because of the large, bi-
modal, reference samples and of the likelihood some of the regions may have changed 
or been incorrectly mapped in the first place. We note here that the robust statistics 
proposed below implicitly address some of these effects. 
 

4.5.2 Methods 
 
Methods for LAI validation fall under two categories: production of in situ reference 
estimates and performance assessments.  This section describes the major approaches 
that have been used for both of these activities. 
 

4.5.2.1 In Situ Reference Estimates 
 

Reference estimates require a sampling protocol (instrument settings, measuring 
sequence at a given point), a method for measuring LAI for each ESU and a method for 
upscaling ESUs to generate a regional LAI reference map. 
 
Commonly, reference sites are located near infrastructure permitting easy access for 
field teams. This ad hoc approach was rehabilitated by CEOS by supplementing these 
sites to provide a globally representative sampling across land cover and peak LAI 
levels using existing experimental networks and the GLC2000 land cover map 
(BELMANIP) (Baret et al. 2006). This has recently been revised to be independent of 
ground experiment measurements as well as better represent the variability of 
vegetation types (using the GLOBCOVER 2009 land cover map) and climatological 
conditions at the Earth surface. Hence the network contains more homogenous sites 
that are appropriate for inter-comparison of products at 1km. The new version, 
BELMANIP2, is available from the CEOS Cal/Val Portal 
(http://calvalportal.ceos.org/web/olive/site-description). Additionally, in some areas (e.g. 
Canada, USA) biome or ecozone stratification is conducted for reference sites. 
However, these sites are infrequently visited. New reference sites mostly correspond to 
other funded projects requiring LAI information. Elsewhere, additional sites are being 
located at new flux towers and ecological monitoring sites, with little consideration for 
spatial representativeness and upscaling for satellite validation studies. It is expected 
that these reference sites and the BELMANIP framework will evolve as new sites that 
are appropriate for satellite validation exercises become available.  
 
Sampling within reference sites has ranged from: 

• Extremely dense spatial sampling that provides accuracy at the cost of efficiency 
(e.g. BIGFOOT). 

• Sampling focusing on covering a flux tower or ecological mapping unit that is 
typically less than 1km2  (e.g. FLUXNET).  

• Stratified random sampling over a ~3km x 3km region (e.g. VALERI). 
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• Spatially replicated clusters of stratified random sampling together with samples 
along linear access routes (e.g. CCRS).  

 
Spatial statistics have been exploited for scaling in situ ESU LAI over reference sites 
(Garrigues et al. 2006, Martinez et al. 2010).  However, (Garrigues et al. 2006) report 
that that there is little benefit in exploiting spatial correlation structures not available from 
simple land cover segmentation. This finding supports the positioning of ESUs within 
relative homogenous regions on the order of 1ha in area that are then scaled using land 
cover or ancillary imagery although more sophisticated spatial statistics may be 
exploited in areas where samples are already allocated across continuously varying LAI 
patterns (Martinez et al. 2010).   
 
Two general categories of upscaling approaches have been applied to generate 
reference LAI maps from ESU level LAI data (Section 3.2). Over regions without prior 
knowledge about relationships between scaling variables (such as reflectances) and 
LAI, structural approaches are required to define scaling transfer functions (e.g. 
VALERI). However, structural approaches are sensitive to measurement errors and 
typically less efficient than functional approaches that can assume a priori relationships 
(Fernandes et al. 2005). Although conceptually straightforward, there has only been 
recent work using calibrated radiative transfer models for reference LAI retrieval 
(Heiskanen et al. 2011, Verger et al. 2011, Claverie et al. 2013). This approach is 
promising in that it only relies on ESU information to define the range of model 
parameters and to validate the final maps.   
 
Perhaps one of the most contentious issues in LAI validation is the accuracy and 
precision of ESU level LAI estimates. ESU estimates are challenging both because most 
must be non-destructive as well as account for woody material and spatial clumping. 
The GCOS Vegetation Survey protocol (Law et al. 2008) provides reasonable 
approaches for ESU LAI estimates based on destructive sampling for crops and forbs 
and optical sampling. These approaches are very time consuming and likely not feasible 
over large regions or for regular repetition. Moreover, they require use of two 
instruments (the LAI-2000 and TRAC) for PAIe estimates in forests and savannah. 
These approaches will not easily capture very low vegetation and it is not clear how 
accurate the TRAC clumping index estimate is when applied to LAI-2000 data for 
forests. These latter estimates also require correction for shoot clumping (Stenberg 
1996) and woody area that can have large (>50%) uncertainties between and across 
species.     
 
Many groups now make use of digital hemispherical photography (DHP) and digital 
camera photography (DCP) for ESU level LAI estimates. A number of studies indicated 
that such methods, while suitable for broadleaf canopy PAIe were limited by technical 
aspects of the cameras for short vegetation and dense forests (Zhang et al. 2005, Ryu 
et al. 2010). It is noteworthy that these studies often used non-professional grade 
instruments without calibration for geometric and radiometric responses. Work at INRA, 
CSIRO and CCRS suggest that professional grade cameras are unbiased and relatively 
precise (<20%) for broadleaf vegetation and can provide consistent PAIe estimates with 
some bias in clumping over forests with very elongated crowns (Weiss et al. 2004, 
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Demarez et al. 2008, Pekin et al. 2009, Macfarlane 2011). Moreover, such cameras now 
have better resolution than passive direct beam instruments like the TRAC, especially 
when used in planar zoom mode rather than with fisheye lenses. Certain manufacturers 
also allow for correction of chromatic aberration and poor exposure leaving only focus 
and depth of field as issues for optimisation in situ. 
 
Work within the VALERI project and in Finland indicates that 10-15 DHP images (or LAI-
2000 measurements) are sufficient for PAIe in an ESU (Demarez et al. 2008, Majasalmi 
et al. 2012). Notwithstanding these developments, the issue of estimating woody area is 
still best addressed only over deciduous woody areas or by allometric equations. The 
censoring of woody matter in digital images may be appropriate for trees having distinct 
crowns, but is problematic in general since an unknown amount of foliage is also 
censored. CEOS has identified the need to establish systematic in situ monitoring 
activities appropriate for satellite validation across all vegetated regions under the 
BELMANIP framework (Baret et al. 2006). In future editions of the GCOS Satellite 
Supplement, this should be reinforced (see Actions T29, T3 and T4 within (GCOS-138 
2010)). 

 

4.5.2.2 Statistics Used for Performance Assessments  
 
LAI validation studies have used common approaches for reporting product performance 
although the spatial and temporal extent of the sampling distribution used for 
comparisons has varied from local to global studies. Local studies have historically relied 
on exact spatial and temporal matches to reference LAI estimates. While useful for 
diagnosing specific issues with products, local studies do not serve to meet the GCOS 
reporting requirements or general user needs for performance over regional to global 
extents. For example, NASAs MODIS validation effort was based on a global biome 
stratification with regional sites optimised for access and the presence of local 
collaborators (Morisette et al. 2006). In contrast, regional and global validation studies 
now rely on a priori sampling designs for inter-comparisons. At a national scale, CCRS 
uses a stratified sampling approach based on selecting Landsat World Reference 
System frames that cover ecozones (one level more detailed than a biome) across 
Canada and maximises the match to within ecozone land cover distribution (Fernandes 
et al. 2003). The US National Environmental Observation Network (NEON) is also 
acquiring LAI estimates using a nested spatial sampling over each of 80 sites stratified 
by biome and climate zone across the US (NEON 2009). The BELMANIP2 sampling 
plan extends this approach to a global coverage.  
 
With respect to direct comparisons, global LAI estimates are typically compared over co-
located regions (3km x 3km or coarser) through scatter plots across global datasets, 
across biomes, or sometimes across a local region with extensive validation data. 
Statistics are reported to describe the bivariate distribution of reference and product LAI. 
These include the Pearson’s correlation coefficient, the mean relative and raw residuals 
(either as absolute residuals or squared residuals) and the bias from a 1:1 line of a linear 
fit (e.g. (Garrigues et al. 2008a)). The majority of studies surveyed do not test for normal 
or homeoscedastic uni-modal distributions of residuals. This should be conducted 
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especially at global scale because it is likely residuals differ for different LAI levels that 
are themselves correlated with biome type or seasonal sampling. Claverie et al. (2013) 
specifically report residuals as a function of time using box-plots to address this concern. 
 
Direct comparisons of temporal trends in LAI are extremely limited and often assume a 
small (<1km2) site is representative of a larger pixel (Ryu et al. 2012). This assumption 
may be appropriate for large fields and homogenous forests but requires care with the in 
situ protocol and upscaling of reference data to ensure the uncertainty due to this 
assumption is quantified. For example, the CCRS protocol makes use of replicate ESUs 
within large farm fields and the work of the GEOLAND2 team relies on spatial statistics 
to account for heterogeneity in LAI patterns (Martinez et al. 2010).  Ideally a time-series 
of reference LAI maps could be produced by applying the appropriate scaling transfer 
function to the time-series of satellite images. For example (Claverie et al. 2013) used a 
radiative transfer model inversion using neural networks as a transfer function applied to 
time-series of Formosat images over an agricultural region. Careful field measurements 
were used to quantify the accuracy of the reference maps over time. The combination of 
this approach with an automated in situ survey may facilitate future temporal accuracy 
studies. 
 
Inter-comparisons are commonly conducted at a lowest common resolution or coarser to 
minimise differences due to spatial mismatch (Garrigues et al. 2008a). Time-series plots 
over selected sub-sampled regions, usually by land cover and biome type, are 
presented together with maps of inter-product differences on a monthly or seasonal 
basis. Scatter plots are sometimes presented, but we note that these are not commonly 
applied to the same sampling distribution used for direct validation.   
 
Accuracy assessments typically include statistics describing conformity with assumed 
LAI patterns with an emphasis on temporal precision. These include distributions of LAI 
changes over dense evergreen forests and non-vegetated areas and computing 
deviations from local linearity in consecutive LAI retrievals over seasons. Studies 
evaluating spatial precision are uncommon, although (Fernandes et al. 2003) used 
Landsat Enhanced Thematic Mapper Plus (ETM+) and Thematic Mapper (TM) imagery 
with the same algorithm as their continental scale product to evaluate differences 
caused by using coarse resolution imagery. In principle, studies relying on high 
resolution imagery could also evaluate spatial precision assuming the global LAI 
algorithm could be applied to that image data set. 
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5 RECOMMENDED APPROACH FOR GLOBAL LAI PRODUCT 
VALIDATION 

 
 
The goal of this section to provide guidelines for producing statistics related to the 
accuracy, precision and completeness of LAI products with global coverage. 
 
Accuracy estimates require comparison of corresponding product and reference LAI 
values. The representativeness and the confidence interval of accuracy estimates are 
limited a priori by the current spatial and temporal coverage of reference LAI data.  
Previous validation studies have performed accuracy assessments using both pooled 
global reference datasets and comparisons to regional reference datasets (Garrigues et 
al. 2008a, Camacho et al. 2011, Camacho et al. 2012, Fang et al. 2013). Pooled 
datasets are problematic since: a) the sampled in situ sites cannot be assumed to be 
either representative of the global LAI distribution; b) LAI products are frequently based 
on biome specific algorithms that should then be validated at the biome level; and c) 
validation statistics from pooled global reference sites may be biased since differences 
between reference and products may be systematically related to land cover or climate 
conditions, while common accuracy statistics usually assume that differences arise from 
simple (e.g. bivariate normal, unimodal) distributions. In this sense it is good practice to 
quantify accuracy on a spatially stratified basis and to account for the reduced sample 
size by reporting the uncertainty of the accuracy statistics.   
 
Estimates of precision can be derived using ensembles of LAI estimates from the same 
algorithm over the same surface condition (e.g. LAI, biome, climate zone). As such, 
precision can generally be estimated over global multi-year extents of a given product.  
The uncertainty in precision statistics is related chiefly to the assumption of similar 
surface conditions and to the temporal extent of the product.   
 
Estimates of continuity can be derived directly from product metadata or quality flags, 
although care is required to account for differences in temporal sampling or data quality 
levels when inter-comparing continuity statistics.  
 
LAI products often include uncertainty estimates generated based on theoretical or prior 
error models (Fang et al. 2013). Where available, these uncertainty estimates can be 
used to improve estimates of accuracy, but should not be confused with the validation 
statistics used here, that rely on comparisons of products and reference data. 
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5.1 Reference Data Sets 
 
CEOS validation requires reference LAI measurements generated from methods 
independent of the products being validated. CEOS allows for both in situ and other 
suitable reference data. In this section we describe good practices for the selection of 
reference datasets, matching reference data sets to products and for producing and 
reporting accuracy statistics. 
 

5.1.1 Reference Estimates Traceable to In situ Measurements 
 
Ideally, a globally representative and continuously revised network of spatially extensive 
reference in situ sites should be available for global LAI validation. Until such a network 
is established, a practical validation strategy should make use of all available sources of 
reference data. As described in Section 3, three sources of reference estimates 
traceable to in situ measurements are available: 
 

1. LAI measurements over individual ESUs. 
2. Spatially extensive LAI reference maps based on data driven relationships 

calibrated using ESU LAI. 
3. Spatially extensive LAI reference maps based on functional relationships 

calibrated using ESU LAI. 
 
Good practice includes use of all three of these reference datasets as long as their 
thematic content is independent of the derived LAI products. 
 
Information related to the performance (accuracy, precision, completeness) of reference 
datasets are useful both to ensure traceability to in situ measurements and for LAI 
validation statistics. Accuracy and completeness are most important since product 
validation often involves aggregating reference datasets.   
 
Aggregation will reduce precision errors but accuracy errors that are not spatially 
random will remain. It is good practice to map the spatially random and systematic 
components of reference LAI error.  Where reference errors are normally distributed the 
root mean square error (RMSE) or one standard deviation interval are appropriate error 
statistics for the reference map. However, reference map errors may include occasional 
outliers due to factors such as errors in land cover data used for scaling in situ LAI 
measurements. In such cases, the RMSE or one standard deviation interval may be 
pessimistic and a percentile interval is preferable. In this case the median absolute 
deviation and the 95th percentile residual are recommended as estimates of typical and 
worst case errors in the reference map.  
 
Completeness refers to the temporal and spatial extent over which the reference data 
can be traced to in situ measurements. Generally speaking reference measurements are 
conducted over a short period of time during which LAI is assumed to be constant.  
Nevertheless, to improve consistency of product evaluations the length of the survey 
interval should be documented and where possible the change in LAI during this interval 
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included in the systematic accuracy error. Spatial completeness includes two aspects: 1) 
the spatial support of the measurements; and 2) the traceability of the method used to 
produce reference data to in situ measurements. For the first aspect, it is good practice 
to restrict reference data use to the spatial convex hull of measurements. The second 
aspect primarily applies when maps are produced using ancillary layers related to land 
cover or spectral imagery. In this case, it is good practice to limit the reference dataset to 
the land cover conditions sampled by these measurements in addition to addressing the 
first aspect. To facilitate reporting of completeness information it is good practice to 
provide a polygon layer indicating spatial regions and a calendar indicating data ranges 
where the data are complete in the sense described here. Examples 5 and 6 in section 
3.2.5 indicate good practices for documenting the accuracy and spatial completeness of 
reference LAI maps. 
 

5.1.2 Heuristic Reference Estimates 
 
In many areas of the world, a suitable upper and lower bound on LAI estimates can be 
derived. For example, water bodies, deserts and glaciers have zero (or very low) LAI. In 
contrast, dense evergreen rainforests will always have some non-zero LAI as long as 
they remain forested. Table 4 indicates a range of in situ LAI available in global 
databases as a function of land cover class. In the absence of local measurements 
these ranges can be used to model the upper and lower bounds of reference LAI value.  
The uncertainty based on these ranges will be large but the net impact during validation 
may be small if the heuristics are limited to isolated cases (e.g. <1% of any validation 
mapping unit) or to cases where only bare areas are specified as zero LAI. The use of 
heuristics based on land cover will include an additional uncertainty due to land cover 
map errors. Good practices to model this uncertainty are not yet available, however, the 
uncertainty for a given land cover class and given land cover map should be reported. 
The classification confusion matrix should be included with this reference data to 
facilitate production of accuracy statistics once these guidelines are produced. 
 

5.1.3  Co-location of LAI Estimates 
 
Direct validation requires comparison of co-located reference and product LAI estimates. 
Differences observed in such comparisons will include both temporal uncertainty and 
spatial uncertainty when matching of reference and product LAI estimates. Part of these 
differences may be due to temporal or geolocation errors in product maps and should be 
included in accuracy assessments where possible. However, good practices are 
required to reduce the contribution of errors in reference map geolocation (geolocation 
uncertainty) or simply due to imperfect alignment of reference and product mapping unit 
(binning uncertainty).   
 
Measurements within match-up units should ideally be independent of those in other 
units to simplify accuracy assessment. However, reducing geolocation error impacts on 
match-ups may result in large match-up mapping units and therefore fewer validation 
samples with less thematic detail (e.g. over mixed cover landscapes there will be fewer 
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pure land cover conditions). As a compromise, it is good practice to minimise the spatial 
overlap of match-up mapping units and to then reduce the number of degrees of 
freedom on validation statistics proportional to the overlap. 
 
Co-locations should be performed over a match-up mapping unit corresponding to a 
continuous spatial and temporal extent that encompasses at least one product estimate 
(e.g. a pixel) although it is good practice to use multiple product LAI values within a 
match-up mapping unit to reduce binning uncertainty. To facilitate reporting and 
replication of validation exercises, it is good practice that all reference and product LAI 
measurements / estimates in a match-up mapping unit should be extracted (instead of 
simply a summary statistic) together with their accuracy without further manipulation 
(aggregation, subsampling etc.) and stored in a database to facilitate independent 
verification of product performance. For consistency, it is good practice to adopt a local 
projection with low distortion in area across each reference region and to align product 
and reference maps along the North-South axes. 
   

5.1.3.1 Geolocation Uncertainty 
 
Geolocation uncertainty corresponds to imperfect specification of either the reference or 
product mapping unit boundaries. Causes of geolocation uncertainty include errors in 
locating mapping unit centroids, variation in the footprint of the sensor measurements 
and uncertainty due to resampling the measurements onto the Earth.    

 
Spatial matching of product and reference mapping units depend on the size of the 
mapping units and their geolocation uncertainties. For both product and reference maps, 
the total spatial uncertainty should be quantified as the sum of the size of the mapping 
unit and the geolocation uncertainty. For irregular (polygon) reference units, the mapping 
units should be approximated as the minimum bounding rectangle oriented north-south. 
To minimise the impact of geolocation uncertainty on validation statistics it is good 
practice to perform co-locations over a mapping unit corresponding to the worst case 
geolocation uncertainty over all product and reference mapping units.   
 
For simplicity it is good practice to use a north-south oriented rectangular moving 
window when performing spatial aggregation to match product and reference mapping 
units. The window should have dimensions of three times the length and width of the 
larger of the product or reference mapping units plus the 95th percentile worst case 
geolocation error. The exception being when comparisons are performed and individual 
ESUs fall within a product pixel. In this case the window size is the 95th percentile 
geolocation error otherwise binning error will become an issue otherwise due to the 
small spatial extent of typical ESUs. 
 

5.1.3.2 Binning Uncertainty 
 
In most cases, both the product and reference mapping units will not have exact spatial 
coincidence (e.g. different raster grid orientation or polygon reference maps and raster 
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products) so some sort of binning is required to extract values over the mapping units 
used for comparisons. Considering that substantial resampling and interpolation may 
already have been performed to generate these maps, it difficult to optimise this binning 
for each possible product / reference data situation. Two common cases are considered 
here.  
 
Firstly, the product or reference maps may not be complete over a match-up mapping 
unit. For example, comparing a small reference ESU with a larger product pixel 
containing it, or where the reference map has areas that are not represented by the 
transfer functions used to produce the map. In this case, it is good practice to use single 
pixel rather than 3 x 3 pixel mapping units for comparison. If after using single pixels the 
product or reference data are still not complete, it is good practice to either discard this 
match-up or assume constant LAI in the unmapped areas of the match-up mapping unit. 
If constant LAI is assumed for the reference LAI, the accuracy error of the reference 
data should be increased. If the unmapped area land cover is not the same as the rest 
of the product pixel it is good practice to use the worst case LAI range from Table 4. 
Alternatively, if the land cover is constant in the product pixel then the range of reference 
ESU LAI within the pixel should be used to model the accuracy error of the reference 
LAI for the pixel. 
 
Secondly, product and reference mapping unit boundaries may not align. In this case 
the match-up mapping unit should ideally correspond to a spatial aggregation of 
sufficient product mapping units so that the relative proportion of partial reference 
mapping units to the match-up area is small. It is good practice to use match-up 
mapping units containing multiple reference mapping units. For raster datasets the 
match-up mapping unit could correspond to aggregations of product pixels that 
encompass at least 3 x 3 reference map pixels. Generalising this condition suggests the 
match-up mapping unit should be one order of magnitude rather than the reference 
mapping units. 
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Example 7: Geolocation Examples 
 
Comparing a 30m resolution reference LAI raster with 1km resolution LAI products, 
both with 95% geolocation error of half a pixel. 
 
The spatial accuracy of reference raster is 60m x 60m and of the product is 2km x 2km. The 
match-up mapping units should correspond to 3 x 3 product pixels to avoid having to bin 
product pixels. This area (9km2) is over 10 times the area of a 30m resolution pixel, so 
binning error for reference pixels is not a concern. The match-ups would be the set of all 
reference and product pixels whose centroid falls in a moving 3km x 3km window. Every 
second product row and column should be used to define centroids to reduce statistical 
dependancies between samples.  This still results in a 50% oversampling so the sample 
sieze used when computing statistical confidence intervals for error statistics based should 
correspond to half the sampled pixels. 
 
Comparing a 60m resolution product LAI raster with no geolocation error with a 20m 
resolution LAI reference with a 1 pixel geolocation error. 
 
The spatial accuracy of the product is 60m x 60m and of the reference is 100m x1 00m.  
Hence sampling of at least 300m x 300m (90000m2) windows over the reference map grid 
should be used for match-ups. To avoid binning errors the match-up mapping units should 
be at least 10 x 60m x 60m = 36000m2. This means that the sampling window should be at 
least 189m x 189m.  The 300m x 300m window is adequate.. The match ups would be the 
set of all reference and product pixels whose centroids fall in moving 300m x 300m 
windows. Every 15th reference row and column should be used to specify centroid of the 
sampling window giving a 50% oversampling.     
 
Comparing an LAI 3 ESU corresponding to a 0.2ha polygon with a 20m resolution LAI 
products with 5m geolocation error. 
 
This is an area of discontinuous crops with a range of LAI for the stratum is [1.0,5.0]. In this 
case the product suggests a match-up window size of at least 30m x 30m or here 3 x 3 
pixels to avoid product binning. Reference binning error is not a concern since the reference 
measurement is smaller than the product measurement. Completeness is a concern since 
the reference measurement covers only half a pixel. Assuming LAI 3.0 over an entire 
product pixel could at worst case result in an +/-1.0 unit error. This should be included in the 
reference accuracy using a Euclidean sum. The match-up would be the LAI 3.0 and the 
product LAI over the 3 x 3 pixel window centred over the ESU. This is a single product 
mapping unit so the confidence interval of the accuracy statistic cannot be estimated. 
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5.2 Validation Metrics 
	  
Definitions for accuracy, precision and completeness applicable to LAI validation drawn 
from experimental statistics are provided here. As a good practice, validation exercises 
should also explicitly define these terms and identify how they relate to the definitions 
provided here to facilitate understanding of results across studies. 
 

5.2.1 Definitions 
 
These definitions are adopted from the Joint Committee for Guides in Metrology (JCGM-
100 2008 ). 
 
The total measurement uncertainty includes systematic measurement error and 
random measurement error. Where there is only one product estimate for each mapping 
unit the total measurement uncertainty corresponds to the accuracy. 
 
Bias, is the expected value of the difference between corresponding product and 
reference estimates. Bias is an estimate of the systematic measurement error. 
 
Precision is the dispersion of product estimates around their expected value for the 
same actual LAI conditions. Precision is an estimate of random measurement error. 
 
Completeness is the proportion of valid retrievals over an observation domain.   
 

5.2.2 Stratification of Performance Statistics 
 
LAI validation should be performed across a representative sampling of LAI magnitudes 
within a spatial and temporal stratification.    
 
LAI products are time-series maps, so complete validation should ideally include 
comparing spatial and temporal patterns of LAI. This involves two additional degrees of 
freedom over which reference samples must be acquired in addition to considering the 
mean LAI magnitude over a given location across time. Product precision and 
consistency can and should include these considerations. However, product accuracy 
requires reference LAI data that are and will continue to be limited until systems for high 
accuracy automated reference LAI mapping are developed. To avoid confusion due to 
differences in stratification used for accuracy, precision and completeness, it is 
recommended to use the constraints demanded for accuracy assessment as a single 
stratification.  
 
In this regard it is good practice to: 
 

• Employ a spatial stratification for performance assessments corresponding to 
continental biomes as in figure 12. 

• Employ  a temporal stratification e.g. separation of snow free and snow covered 
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conditions chiefly to recognise that most current reference LAI sampling does not 
consider snow covered conditions 

• Sample across a representative range of LAI within a stratification for all 
performance statistics 

• Evaluate the precision and completeness of spatial and temporal patterns in 
addition to reporting statistics based on LAI product estimates in a stratum 
without spatial or temporal considerations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Strata for global LAI validation by CEOS, together with BELMANIP2 regional sites 
(yellow triangles). From (Weiss et al. Submitted). 
 
 
Assessing the extent to which the sample selected conforms to these good practices is 
difficult since current sample sizes are not sufficiently large. A first approximation 
involves using the product being validated (or an ensemble of such products) to model 
the population of actual LAI values. In this case it is good practice to compare the 
cumulative frequency distribution of product LAI over the stratum and of the expected 
value of product LAI over match-up units. Deviations between these two distributions are 
indicative of limitations of the validation statistics representativeness for the stratum due 
to biased sampling of LAI magnitudes. For example, figure 13 compares the cumulative 
distribution functions of the ECOCLIMAP LAI product for the BELMANIP v1 (Baret et al. 
2006) sampling design with an exhaustive global sampling. The comparison suggests 
that BELMANIP v1 under-samples bare regions but provides representative sampling 
between LAI 1.0 and 4.0. 
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Figure 13: Comparison of the cumulative distribution of the ECOCLIMMAP peak season LAI 
within the BELMANIP sampling design over a global extent (all mapped land pixels). From 
(Baret et al. 2006). 

 

5.2.3 Validation Statistics 
 
Validation statistics should be reported for each stratum. However, the sampling 
distribution will vary between accuracy, precision and completeness. It is good practice 
to define the sampling distribution and samples from which validation statistics are 
derived. This section specifies good practice statistics or visualisation of performance. In 
addition we relate this good practice to the commonly used practice in the current 
literature. For reference, table 6 summarises both the common practice and the 
recommended good practice. 
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Table 6: Recommended validation statistics. 

Category Good Practice Current Practice 

Total Measurement 
Error 
 

Scatter plot of mean or median 
match-ups Scatter plot of mean only match-up 

Median and percentiles of absolute  
residuals, RMSE Root Mean Square Error (RMSE) 

Box plot of absolute residuals vs LAI  Scatter plot of residuals versus LAI 

Bias 

Median and percentiles of residuals Mean difference 
Box plot of residuals vs. LAI Mean difference vs. LAI 
Kendall-Thiel line slope and 
confidence interval 

Ordinary least squares line slope and 
confidence interval 

Precision 
  

Box plot of residuals from Kendall-
Thiel Line fit Residuals of line fit versus LAI. 

Median signed anomaly of 95th 
percentile and 5th percentile Mean seasonal difference 

Median 3 point difference Mean 3 point difference 
Spatial rank correlation Pearson’s correlation coefficient 

Completeness Gap size distribution Relative frequency histograms 

 
 

5.2.3.1 Measurement Uncertainty 
 
Statistics related to measurement uncertainty is derived from the reference and product 
samples within each match-up in a stratum. Match-ups will typically have more than one 
reference or product value. For simplicity, the expected value of differences (residuals) 
within a match-up is used for uncertainty statistics. When a single ESU reference value, 
is used the expected value is the median of all pairwise residuals. Otherwise the 
expected value is the difference in the mean of reference and product values. A scatter 
plot of expected values of product versus reference LAI for all match-ups should be 
reported together with a 1:1 line (e.g. figure 14).   
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Figure 14: Scatter plots between reference and product LAI for a global validation study 
together with the median absolute difference and range of absolute differences as a function of 
biome. From (Garrigues et al. 2008a). 

 
 
Under the assumption that the distribution of residuals between match-ups is unimodal, 
it is good practice to report the median absolute difference as the total measurement 
uncertainty for this stratum. To represent the possibility of outliers or multiple modes 
accuracy could be further characterised by plotting absolute differences against their 
percentile (e.g. figure 11). In cases where there are sufficient direct comparisons a 
density plot of the product and reference LAI should be reported (e.g. figure 15).   
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Figure 15: Comparison of CCRS SPOT VGT LAI product with the reference LAI map shown in 
Example 5. Left panel shows the percentile rank of both absolute residual (blue line) and relative 
residuals (green line). Right panel provides a bivariate density plot.   

 

 

LAI products often show biases in residuals as a function of product LAI. Firstly, for 
products derived using passive optical measurements an asymptote frequently exists at 
high (>3.0) LAI irrespective of the underlying true LAI. Secondly, a linear bias as a 
function of LAI may be present due to a constant error in canopy clumping. It is good 
practice to product a scatter plot of the signed residuals as a function of product LAI and 
to summarise this relationship numerically. For example, figure 16 summarises the 
absolute residuals (the median indicates total measurement uncertainty), the signed 
residual (the median indicates bias) and the residual after linear regression of reference 
versus product LAI (the median indicating precision) as a function of LAI. In this 
example, residuals are <1.0 until LAI 6.0. Removal of linear trends in residuals does not 
substantially reduce their magnitude, indicating the majority of residuals are random in 
nature (below LAI 6.0) or due to saturation of the product retrievals (LAI >6.0). A 
spatially explicit map of accuracy error should be reported for products that span 
multiple reference datasets.  
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Figure 16: Box-plots of measurement uncertainty statistics from comparison of CCRS VGT LAI 
and reference LAI map shown in Example 5. Red bars indicate median residuals, blue boxes 
cover 50% of the data and whiskers include 95% of the data. 

 

5.2.3.2 Precision 
 
Precision corresponds to the dispersion of an ensemble of product LAI estimates.  
Ideally the precision of both the spatial and temporal evolution of LAI should be 
quantified. This is challenging to visualise and can be sensitive to disturbances (e.g. 
forest fires and droughts) or shifts in the phase of seasonal LAI cycles. We assume that 
spatial disturbances do not impact the majority of the stratum (this should be evaluated if 
possible). We also assume that temporal shifts do not impact the seasonal range of LAI 
for the majority of annual cycles (this should be evaluated if possible). With these 
assumptions three aspects of precision are proposed for evaluation. 
 

a) Inter-annual Precision 
 
Anomalies of an upper and lower percentile of LAI are indicators of intern-annual 
precision, for example the lower 5th percentile and upper 95th percentile of annual LAI. In 
the absence of a linear trend the dispersion of these anomalies about their expected 
value is then a useful indicator of inter-annual temporal precision. Ideally a Mann-
Kendall test could be applied to detect and remove linear trends although this is not 
recommended considering the relatively short (<30 years) temporal extent of most 
products.  
 
For all pixels without (or assumed to be without) detected linear trends in anomalies it is 
good practice to report the median absolute deviation of anomalies and the confidence 
interval of this statistic as spatial maps. As a non-spatial statistic, it is good practice to 
provide a boxplot of the median absolute deviation of anomalies versus product LAI for 
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bins corresponding to LAI 0.0 – 1.0, 1.0 – 2.0, 2.0 – 3.0 etc. until the maximum product 
LAI together with a single statistic corresponding to the 50th percentile of anomalies over 
the entire stratum. 
 

b) Intra-annual Precision 
 

Intra-annual precision corresponds to temporal noise assumed to have no serial 
correlation within a season. In most strata we can assume that the actual LAI between 
retrievals separated by a short (e.g. 10 day or less) time period should change at a rate 
similar to a slightly longer (e.g. 30 day) period. In this case the anomaly of a product LAI 
value from the linear estimate based on its neighbours can be used as an indication of 
intra-annual precision. Figure 17 provides an example of global histograms of central 
differences. It is possible that intra-annual noise will vary with biome and position in the 
seasonal cycle. To account for this possibility it is good practice that the observed 
anomalies for each month and each biome are summarised in terms of box plots as a 
function of the seasonal cycle of LAI.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Spatial Precision 
 
Spatial precision corresponds to the repeatability of the spatial pattern of a product. 
Spatial rank correlation can be used to quantify the pairwise similarity of two products 
from the point in the annual cycle while minimising the impact of temporal noise. It is 
good practice that the rank correlation between successive temporal products should be 
computed for every annual cycle and summarised in terms of box plots as a function of 
the seasonal cycle of LAI. Rank correlation statistics are useful to evaluate product 
performance over time but should not be used to compare the precision of products with 
substantially different spatial mapping unit size.   

Figure 17: Historgam of differences for 
four global LAI products over all 
BELMANIP2 sites for 3 years (Camacho 
et al. 2011).  
GEOV1 (GEOLAND v1), CYCV31 
(CYCLOPES v3.1), MODC5 (MODIS 
Collection 5) and GLOV2 (GLOBCARBON 
v2). 
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5.2.3.3 Completeness 
 
Completeness corresponds to the absence of spatial or temporal gaps in data. It is good 
practice to map the proportion of good retrievals within a stratum. Spatial completeness 
will change with season. Figure 18 shows both temporal and spatial completeness using 
multiple years of global LAI products. Temporal completeness is depicted using the 
monthly average percentage of valid retrievals. Spatial completeness uses bar plots to 
summarise percentage valid retrievals by biome. To reflect the potential variability in 
temporal completeness from year to year and biome to biome it is good practice to 
provide a box plot for completeness based on averages taken for each unique year and 
biome condition and to provide biome specific plots for outlier biomes. Similarly, it is 
good practice to report spatial completeness as the box plots of the proportion of good 
retrievals as a function of the seasonal cycle of LAI. Temporal completeness includes 
consideration of the persistence of gaps. It is good practice to graph the frequency of a 
given temporal gap size versus the temporal gap size over the available data (e.g. figure 
19). 
 
 
 

 

 

 

 

 

 
Figure 18: Percentage of acceptable quality retrievals (according to producer provided quality 
indices) as a function of time (a) or biome (b). Note that these statistics assume accurate data 
quality reporting by producers. From (Fang et al. 2013). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Gap length frequency for four 
Global LAI products over all 
BELMANIP2 sites for 3 years (Camacho 
et al. 2012).  
GEOV1 (GEOLAND v1), CYCV31 
(CYCLOPES v3.1), MODC5 (MODIS 
Collection 5) and GLOV2 (GLOBCARBON 
v2). 
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5.2.3.4 Ensemble Inter-comparison 
 
Ensemble LAI estimates from multiple products offer a means of simultaneously 
evaluating precision and stability. In the ideal case a sufficient number of independent 
ensemble members (products) would be available to quantify the confidence intervals for 
these statistics. At present this is not the case so the good practices for quantifying 
confidence intervals of inter-comparisons have yet to be developed and tested.    
 
Current examples of good practice for ensemble inter-comparison involve one of two 
procedures: 
 

1. Mapping residuals between ensemble members and some candidate reference 
from the ensemble (e.g. figure 20). 

2. Comparing the joint distribution (scatter plots, e.g. figure 21) or marginal 
distributions (histograms, e.g. figure 22) of LAI of ensemble members with the 
reference within a stratum.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Anomalies in peak season LAI between global products and a chosen reference 
member (in this case a regional LAI product over Canada and Alaska). Boxes indicate regions 
with differences related to land cover specification in global products. From (Garrigues et al. 
2008a). 
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Figure 21: Scatter plots comparing growing season LAI for four global LAI products over 
grassland biome BELMANIP sites for four years. Included are summary statistics for linear 
correlation coefficient (R2), root mean square error (RMSE), mean signed bias (B), and standard 
deviation of differences (S). From (Garrigues et al. 2008a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: Inter-comparison of product LAI histograms on a biome basis. From (Camacho et al. 
2011). 
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Both comparisons should be performed at a common aggregation level both in space 
and time. Current good practice relies chiefly on monthly temporal intervals and spatial 
resolutions on the order of 10km x 10km (e.g. (Garrigues et al. 2008a, Fang et al. 
2013)). With the advent of higher spatial resolution systematic LAI products it is 
anticipated that these good practices will require adjustment. One good practice would 
be to use the same rules for defining match-up mapping units as identified for validation 
in Section 5.1.3.   
 
It is proposed that irrespective of the aggregation used for a specific validation study an 
inter-comparison of products also be conducted at 10km x 10 km resolution for 3 
monthly intervals spanning each year. This will ensure some level of consistency across 
studies. To further promote consistency, scatter plots stratified by continental biomes 
should be reported where feasible.   
 
The possibility for using triple-co-location (Stoffelen 1998) for ensemble inter-
comparison needs further investigation before it can be recommended as a good 
practice. Chiefly, a number of LAI products are derived from the same input satellite 
imagery or trained from other LAI products. In both instances the assumption that each 
product is an independent estimate of the underlying LAI may not apply so co-location 
methods may provide biased precision and agreement statistics. 
 

5.3. Reporting Results of LAI Validation 
 
The results of validation exercises should be reported publicly after review by the data 
producers and independent scientific peer review. Reporting in refereed journals is 
encouraged and supporting materials corresponding to spatial or temporal accuracy 
statistics should be made accessible. The following details related to reporting are good 
practices: 
 

1. All participants in the exercise should be declared unless products were provided 
blindly.  

2. Links to accessible versions of the products and reference data used during the 
validation should be provided and maintained. 

3. Match-ups of product and reference LAI values used to derive aggregation 
statistics together with ancillary information related to location (at least the 
continent and biome), temporal interval (at least snow or snow free condition) and 
uncertainty in reference data (at least a reference to the protocol used to produce 
each reference data point) should be made available publicly. 

4. Scatter plots and statistics recommended in Section 5.2 and 5.3 should be 
reported within the validation document or linked supplementary material in 
addition to any other statistics. 

5. Planned updates or revisions to the document (e.g. in anticipation of new 
reference datasets that may be available on a regular basis) should be identified. 
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6 CONCLUSIONS  
 
A number of good practices for validation of global leaf area index products are 
presented within this document. The good practices include essential definitions, an 
assessment of approaches for producing reference datasets, the current status of 
validation and a recommended validation methodology based on current knowledge.  
 
The validation methodology involves quantification of product accuracy, precision and 
completeness. Globally representative sampling schemes, such as BELMANIP2, should 
be used to prioritise new in situ LAI networks. However, the good practices presented 
recognise that this may not be feasible with current LAI survey methods. Two strategies 
were proposed to address this limitation. Firstly, the use of robust biome level statistics 
for reporting product accuracy so that confidence in our knowledge of global product 
accuracy is fairly represented. Secondly, the use of upscaling methods that maximise 
the coverage of reference LAI maps. Specifically, careful consideration of in situ 
sampling and design of transfer functions for upscaling can produce reference maps 
with relatively low bias over large (>100km2) regions. 
 
The good practices promote uniform definitions for vegetation quantities related to LAI, 
uniform spatial and temporal aggregation procedures, sampling design for reference 
comparisons and inter-comparison and uniform performance statistics and 
visualisations. These approaches should be considered a minimum common element of 
validation studies and should be enhanced where feasible with performance indicators 
relevant to each datasets available during a validation study. New validation exercises 
are encouraged to implement these metrics and report to CEOS LPV in terms of their 
information content.    
 
While this document serves to summarise a common set of knowledge and methods 
useful for validating the mapped satellite-derived LAI values in a product, it does not 
include best practices related to explaining observed LAI errors. There is a need to 
develop a traceable quality assurance system for evaluating in situ methodologies and 
satellite retrieval algorithms under controlled conditions to relate observed differences 
between product and reference LAI to deficiencies in algorithms, satellite data or 
potential reference datasets. 
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8 APPENDIX A 
 
Appendix A: Table 3 Methods URL Links.  This table provides full URLs for the LAI methods in 
Table 3 of the main text for printed versions of this table. See main text for sampling type, 
landcover type, and citation information for each.  

	  
Name Link 
AAFC http://www.sciencedirect.com/science/article/pii/S0168192310002029 
BIGFOOT http://www.fsl.orst.edu/larse/bigfoot/overview.html 
BOREAS 
Destructive http://onlinelibrary.wiley.com/doi/10.1029/97JD02317/abstract 

BOREAS Non-
Destructive http://onlinelibrary.wiley.com/doi/10.1029/97JD01107/abstract 

CCRS 
CANEYE http://lpvs.gsfc.nasa.gov/PDF/CCRCANEYELAIv2012.pdf 

CCRS DHP ftp://ftp.ccrs.nrcan.gc.ca/ad/LEBLANC/SOFTWARE/DHP/DHP-
TRACWin_MANUAL.pdf 

CCRS TRAC ftp://ftp.ccrs.nrcan.gc.ca/ad/LEBLANC/SOFTWARE/DHP/TRAC_MANUAL.
pdf 

CCRS Tundra http://pubs.aina.ucalgary.ca/arctic/Arctic62-3-281.pdf 
CONECOFOR http://www.jlimnol.it/index.php/jlimnol/article/view/349/0 
DECAGON 
Ceptometer http://manuals.decagon.com/Manuals/10242_Accupar LP80_Web.pdf 

FLUXNET http://faculty.geog.utoronto.ca/Chen/Chen's 
homepage/PDFfiles/unp115_Jing6_AFM.pdf 

FUTMON http://www.futmon.org/sites/default/files/documenten/Field_Protocol_Radiati
on_LAI_D2_3f.pdf 

GTOS http://www.fao.org/gtos/doc/pub55.pdf 
Helsinki 
University http://www.sciencedirect.com/science/article/pii/S0378112712007402 

INRA Row 
Crop http://www.sciencedirect.com/science/article/pii/S0168192310001206 

LICOR LAI-
2000/2200 http://envsupport.licor.com/docs/LAI-2200C_Instruction_Manual.pdf 

Ryu, Nilson 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.8023&rep=re
p1&type=pdf 
http://www.cnr.berkeley.edu/biometlab/pdf/Ryu et al 2010 AgForMet  
clumping.pdf 

UNECE http://www.icp-forests.org/pdf/FINAL_Litter.pdf 
(http://icp-forests.net/page/icp-forests-manual) 

VALERI 
http://w3.avignon.in
ra.fr/valeri/ 

http://research.eeescience.utoledo.edu/lees/papers_pdf/Weiss_2004_AFM.
pdf 
http://w3.avignon.inra.fr/valeri/fic_htm/methodology/main.php 
http://w3.avignon.inra.fr/valeri/fic_htm/methodology/main.php 

 
 
 


